2012

Dam Removal in the Pacific Northwest: Lessons for the Nation

Michael Blumm
Lewis & Clark Law School

Andrew B. Erickson
Lewis & Clark Law School

Follow this and additional works at: https://lawcommons.lclark.edu/faculty_articles

Part of the Energy and Utilities Law Commons, Environmental Law Commons, Natural Resources Law Commons, and the Water Law Commons

Recommended Citation
Available at: https://lawcommons.lclark.edu/faculty_articles/10

This Article is brought to you for free and open access by the Faculty Scholarship at Lewis & Clark Law School Digital Commons. It has been accepted for inclusion in Faculty Articles by an authorized administrator of Lewis & Clark Law School Digital Commons. For more information, please contact sarahjohnson@lclark.edu.
ARTICLES

DAM REMOVAL IN THE PACIFIC NORTHWEST: LESSONS FOR THE NATION

BY

MICHAEL C. BLUMM* AND ANDREW B. ERICKSON**

Over the past dozen years, a number of large dams in the Pacific Northwest have been removed in an effort to restore riverine ecosystems and dependent species like salmon. These dam removals provide perhaps the best example of large-scale environmental remediation in the twenty-first century. This restoration, however, has occurred on a case-by-case basis, without a comprehensive plan. The result has been to put into motion ongoing rehabilitation efforts in four distinct river basins: the Elwha and White Salmon in Washington and the Sandy and Rogue in Oregon. In all, nine significant dams have been removed, and four more—in the contentious Klamath Basin of Oregon and California—are slated for removal within the next decade. This Article surveys both the successful and proposed removals in order to draw lessons both within and beyond the Pacific Northwest. We identify a number of factors that determine both the speed and success of dam removal efforts, including the availability of the federal licensing process under the Federal Power Act, the existence and organization of local opposition, the amount and sources of funding, and the support of federal and state resource agencies and well-positioned members of Congress. These factors suggest that the promised removal of the Klamath dams—as well as calls for removing four federal dams on the Lower Snake—face significant odds.

* Jeffrey Bain Faculty Scholar and Professor of Law, Lewis & Clark Law School.
** J.D. expected 2013, Lewis & Clark Law School.
I. INTRODUCTION

II. THE ELWHA RIVER: REMOVAL OF THE ELWHA AND GLINES CANYON DAMS
 A. Damming the Elwha River
 1. Construction of the Elwha and Glines Canyon Dams
 2. The Decline of the Elwha River Ecosystem
 B. FERC Relicensing, Political Compromise, and Dam Removal Efforts
 1. Relicensing the Dams
 2. Political Compromise and Funding for Removal
 3. The Removal
 C. Restoring the Elwha River

III. THE WHITE SALMON RIVER: REMOVING THE CONDIT DAM
 A. Condit Dam Construction
 B. The Federal Power Act, Relicensing, and Dam Removal Efforts
 1. The Federal Power Act and FERC Relicensing
 2. The 1999 Agreement, Federal and State Regulatory Approval, and License Forfeiture
 3. The Dam Removal Process
 C. Restoring the White Salmon River

IV. THE SANDY RIVER BASIN: DECOMMISSIONING THE BULL RUN HYDROELECTRIC PROJECT
 A. The Little Sandy and Marmot Dams
 B. The Settlement Agreement to Remove the Dams
 1. The Settlement Agreement and FERC License Surrender
 2. The Removal Procedures
 C. Restoring the Sandy River Basin

V. THE ROGUE RIVER: RESTORING THE WILD AND SCENIC RIVER
 A. Fragmenting the River: Dams Throughout the Rogue Basin
 1. Savage Rapids Dam
 2. Gold Hill Dam
 3. Gold Ray Dam
 4. Elk Creek Dam
 B. Restoring the Rogue River

VI. THE KLAMATH RIVER BASIN: LOOKING AHEAD TO FUTURE DAM REMOVALS
 A. Setting the Stage for the Klamath Controversy
 1. Dam Building for Power
 2. Irrigating the Upper Klamath Basin
 3. Tribal Water Rights and the Disappearing Salmon
 B. Dam Removal and the Klamath Basin Agreements
 1. The Relicensing Process
 2. The Agreements
 C. Factors Affecting Dam Removal: Lessons for the Klamath

VII. CONCLUSION
I. INTRODUCTION

The Pacific Northwest stands at the forefront of a new era in dam removal and river restoration. For over twenty years, the government has studied, and river advocates have championed, a policy of breaching dams that block salmon passage to spawning streams in Washington, Oregon, and California. Recently removed dams and several scheduled removals indicate that long-fought efforts to remove certain dams and restore their rivers are bearing fruit.

For most of the twentieth century, dam construction dominated the rivers of the Pacific Northwest. Throughout the region’s major river basins, dams produced hydropower, irrigation, flood control, and opportunities for recreation. Yet the benefits of the dams came at high environmental costs. Salmon and other anadromous fish that return from the ocean to spawn in freshwater streams encounter dams that often prevent their passage. The high mortality rates caused by dams led to the listing of a number of salmon species under the Endangered Species Act (ESA).

6 F. Lorraine Bodi, Protecting Columbia River Salmon Under the Endangered Species Act, 10 ENVTL. L. 349, 369 (1980). The fish blocked include not only salmon, but also steelhead, which are technically trout, but which share anadromous characteristics with salmon. Michael C. Blumm et al., Practiced at the Art of Deception: The Failure of Columbia Basin Salmon Recovery Under the Endangered Species Act, 36 ENVTL. L. 709, 711 n.1 (2006).

changed hydraulic conditions, and the difficulties of downstream fish passage around the dams led many to claim that saving and replenishing salmon resources depended on removing barriers to free-flowing rivers and restoring the rivers' natural hydrology.8

Serious public attention turned to the prospect of removing dams in the 1990s.9 In 1992, Congress authorized the federal purchase of the Elwha and Glines Canyon Dams in Washington State for $29.5 million.10 The Elwha Act directed the Department of the Interior to study and implement complete restoration of the Elwha River ecosystem, including the removal of the two dams.11 Two years later, in 1994, the Federal Energy Regulatory Commission (FERC) issued a policy statement interpreting section 3 of the Electric Consumers Protection Act12—which requires FERC to give equal consideration to environmental and economic factors when licensing dams13—concluding that the agency could order removal of dams at the dam owner’s expense.14 Inherent in FERC’s dam removal policy was the recognition that in some cases the balance of environmental and economic considerations tipped in favor of removing dams.15 FERC used this power for the first time in 1997 when it ordered the removal of the Edwards Dam in Maine.16 Consequently, in 1999, for the first time in 160 years, the Kennebec River flowed unimpeded to the ocean, allowing the free passage of fish from the Atlantic to spawn upstream in headwaters tributaries.17

The success of the Edwards Dam removal led to increased interest in dam removal and an accelerating number of proposals for river restoration

9 See Pyle, supra note 1, at 98–99 (discussing Congress’s decision to remove dams on Washington’s Elwha River, a subsequent FERC policy statement indicating further dam removal in the future, and also noting the increased public support in favor of dam removal).

11 Id. §§ 3, 4, 106 Stat. at 3174–76.

14 Id. at 340.

17 Id.

Electronic copy available at: https://ssrn.com/abstract=2101448
in the Pacific Northwest. But removing dams and restoring rivers is quite complex. Aside from the physical practicalities of engineering safe dam breaches and restoring ecosystems, legal and political factors affect the speed and success of removal efforts. Some dam removal projects have proceeded relatively quickly from proposal to completion. Other projects experience conflict, political wrangling, and serious delay. This paper examines the factors that affect the outcome of dam removal proposals, including the size of the removal, the FERC relicensing process, local opposition, political support, and funding.

We examine several dam removals and proposed removals in the Pacific Northwest in order to analyze the factors that contribute to successful and speedy dam removal. Part II of this Article begins by investigating the Elwha and Glines Canyon Dams on the Elwha River near Olympic National Park in western Washington. The federal government purchased both dams in 2000 and began the removal process in the fall of 2011. The government aims to restore the natural ecosystem near the national park over the next thirty years.

21 See David H. Becker, The Challenges of Dam Removal: The History and Lessons of the Condit Dam and Potential Threats from the 2005 Federal Power Act Amendments, 36 ENVTL. L. 811, 832 n.135 (2006). The Gold Hill and Gold Ray dams were removed within a few years of the initial proposal. See infra Part V. Portland General Electric removed the Little Sandy and Marmot Dams near Mt. Hood eight and nine years after the initial proposal, respectively. See infra Part IV.

22 See Philip M. Bender, Restoring the Elwha, White Salmon, and Rogue Rivers: A Comparison of Dam Removal Proposals in the Pacific Northwest, 17 J. LAND RES. & ENVTL. L. 189, 219–30 (1997) (discussing conflicts associated with removal of Elwha and Glines Canyon Dams). Removing the Elwha and Glines Canyon Dams was proposed for over a quarter-century, beginning in 1984. Removal finally began in 2011 and will continue until the end of 2012. See infra Part II.B. Discussions of removing dams in the Klamath have been ongoing for over a decade, with dam removal not expected to begin until at least 2020. See infra Part VLB; Dow A. Davidson, Comment, Who Wants Some Water: The Ongoing Battle for the Klamath River Basin and the Need for Moderate Institutional Change to End the War, 34 CUMB. L. REV. 531 (2004) (discussing the conflicts over water rights in the Klamath River Basin). It took 12 years to remove the Condit Dam after a settlement calling for dam removal. See infra Part III.

24 See infra Part II.C.
Part III addresses the removal of the Condit Dam on the White Salmon River in southern Washington. The Condit removal was a result of a 1999 settlement between the Yakama Nation and other tribes, the dam’s owner-operator PacifiCorp, federal agencies, and environmental groups, regarding salmon access to traditional fishing areas upstream. PacifiCorp faced the choice of implementing expensive modifications to allow fish passage at the Condit or agreeing to pay for a complete removal. In October 2011, a dozen years after the settlement, PacifiCorp removed the dam and in 2012 began remediation activities, including the removal of the dam remnants.

Part IV turns to the removals of the Marmot and Sandy Dams near Mt. Hood outside of Portland, Oregon. These two small-scale hydroelectric dams—owned and operated by Portland General Electric (PGE)—required extensive repairs and upgrades in order to modernize fish passage facilities and comply with fish passage prescriptions under the Federal Power Act (FPA). PGE opted for removal rather than paying for the expensive repairs, and removed the dams without much fanfare in 2007 and 2008, respectively.

Part V examines the Rogue River watershed in southern Oregon. The Rogue Basin once featured eight major dams that provided irrigation water and flood control. But between 2008 and 2010, local governments removed three of the dams—the Gold Hill, Savage Rapids, and Gold Ray Dams—and the U.S. Army Corps of Engineers notched a fourth—the Elk Creek Dam. At the time of removal, none of the dams provided hydroelectric power, and the extensive maintenance costs and new irrigation options contributed to the various decisions to remove the aging dams and not complete the Elk Creek Dam.

Part VI proceeds to consider proposals for dam removal in the Klamath River Basin in southern Oregon and northern California. The Klamath Basin now has seven major dams, all owned by PacifiCorp, all but one of which provide significant sources of hydroelectric power. In 2010, two major settlements in the Klamath Basin established a goal of removing four of these dams on the mainstem of the Klamath River by 2020. The Klamath restoration would be the largest dam removal project in history, but resolving the contentious issues of funding for removal and allocating water rights remain significant hurdles before beginning the restoration.

The Article concludes by assessing the prospects for future dam removals and investigating how lessons from the Pacific Northwest can be
applied to other regions. The experiences of dam removal in the Pacific Northwest—including restoration projects as monumental as the dams they will replace—provide useful examples for other regions struggling to break down the complex legal, political, and concrete barriers to restoring free-flowing rivers.

II. THE ELWHA RIVER: REMOVAL OF THE ELWHA AND GLINES CANYON DAMS

The Elwha River’s headwaters are in the Bailey Range of the Olympic Mountains in western Washington. The river flows north to the Strait of Juan de Fuca, halfway between the Pacific Ocean and Puget Sound. Glaciers that once covered the Olympic Peninsula during the Pleistocene shaped the hydrology of the Elwha watershed, creating a rapid river that descends 4,500 feet in just forty-five miles. Before construction of the dams, the Elwha River supported a highly productive fishery, regarded as one of the most prolific in the Pacific Northwest. The Elwha watershed provided spawning habitat for every species of anadromous fish native to the Pacific Northwest, including massive Elwha River chinook salmon that often weighed more than a hundred pounds. For over 2,700 years, the Elwha River’s fisheries had helped sustain the survival and livelihoods of the native inhabitants of the area.

A. Damming the Elwha River

The growth of non-native settlement on the Olympic Peninsula near the end of the nineteenth century led to drastic changes in the human economy of the region as well the Elwha River ecosystem. Since 1914, the Elwha and...
Glines Canyon Dams produced hydroelectric power that facilitated the growth in cities and industries throughout the peninsula. Yet almost immediately after the dams’ construction, the river’s salmon fishery virtually disappeared, and the ecology of the Elwha River entered a steep and long-term decline.

1. Construction of the Elwha and Glines Canyon Dams

In 1910, the Olympic Power and Development Company began construction of a hydroelectric dam in the Elwha Gorge, five miles upstream from the river’s mouth.\(^{38}\) Engineers built an eighty-foot concrete gravity dam across the river by anchoring each side of the dam to the canyon walls, suspending the retaining wall down to the riverbed.\(^{39}\) After the first design failed and flooded downstream communities, the reconstructed Elwha Dam was completed in 1913, standing 105-feet tall and creating a 267-acre reservoir, Lake Aldwell.\(^{40}\)

The success of lumber mills and the growing economy of the peninsula led to increased demand for electricity and more hydroelectric development.\(^{41}\) In 1925, construction of a second dam began about eight miles upstream from the Elwha in Glines Canyon.\(^{42}\) Workers completed Glines Canyon Dam, a 210-foot concrete arch dam, in 1927, creating a new reservoir on the Elwha River: Lake Mills.\(^{43}\) Hydroelectric power generated at the Glines Canyon Dam and a significant water diversion, totaling more than 150 cubic feet per second from the Elwha River, supplied lumber mills in Port Angeles, Washington.\(^{44}\) Unlike the Elwha Dam, which was constructed before enactment of the 1920 Federal Power Act, the Glines Canyon Dam received a fifty-year permit from the Federal Power Commission in 1926 for hydropower production.\(^{45}\)

Together, the Elwha and Glines Canyon Dams generated a significant amount of electricity for the Olympic Peninsula.\(^{46}\) The dams produced over 28 megawatts (MW) of electricity and supplied power to lumber mills in Port

\(^{39}\) See Nat’l Park Serv., supra note 38.

\(^{41}\) See Nat’l Park Serv., supra note 38.

\(^{42}\) See ELIZABETH GROSSMAN, *WATERSHED: THE UNDAMMING OF AMERICA* 159 (2002). The Elwha Dam was built at river mile 4.9 and the Glines Canyon Dam at river mile 13.5. *Id.* at 158–59.

\(^{43}\) See Bureau of Reclamation, *supra* note 23; GROSSMAN, supra note 42, at 159.

\(^{44}\) See BROWN, supra note 36, at 94.

\(^{45}\) See GROSSMAN, supra note 42, at 160.

\(^{46}\) Nat’l Parks Conservation Ass’n, *supra* note 40.
Angeles and cities up to sixty miles away. Over their 100-year history, the
dams changed ownership multiple times, reflecting their profitability and
their importance as reliable sources of electricity to the industries in
the region.

Although the construction and operation of the dams garnered
widespread public support, concerns about the effects on the Elwha's
salmon fishery arose in the first years of construction. The Elwha and
Glines Canyon Dams were both built without fish passage facilities,
in violation of Washington state law, and early attempts at restocking the
river with hatchery fish failed. Since the closure of the original fish
hatchery in 1922, the Elwha River's dams have operated without fish ladders,
other fish passage devices, or even a hatchery. Not until 1975 did the dam
owners enter into a mitigation agreement with the Washington Department
of Fish and Wildlife to fund a salmon rearing channel downstream from the
Elwha Dam and to regulate river flows to facilitate salmon spawning in the
lower river.

2. The Decline of the Elwha River Ecosystem

The Elwha and Glines Canyon Dams completely blocked fish passage to
crucial spawning habitat in the upper forty miles of the Elwha River and
significantly altered the glacial-fed river's hydromorphology. Almost
immediately after the completion of the Elwha Dam, the river's salmon
population dropped by 75%. None of the nine species of anadromous fish
that spawned in the upstream portions of the river and its headwaters
managed to spawn in years after 1910, and all but one species of salmon—

elwhainfo.org/elwha-river-watershed/dam-removal/history-elwha-and-glines-canyon-dams (last
visited Nov. 18, 2012).
48 See GROSSMAN, supra note 42, at 161.
49 See GROSSMAN, supra note 42, at 158.
facilities whenever an obstruction was placed in a river where “food fish are wont to ascend”).
See BROWN, supra note 36, at 71; Busch, supra note 32, at 12.
51 See BROWN, supra note 36, at 71–72.
52 See id. The Lower Klallam Tribe operates a fish hatchery in coordination with the
Washington Department of Fish and Wildlife on the lower Elwha River. See Elwha Watershed
53 Agreement Between Crown Zellerbach Corporation and Washington State Department of
Fisheries, Covering Contribution Toward Cost of Construction and Operation of Salmon
Hearing Pond and Appurtenant Facilities on Elwha River, Apr. 25, 1975, available at
See BROWN, supra note 36, at 108.
54 See BROWN, supra note 36, at 72. The Elwha Dam blocked fish passage to 93% of fish
spawning habitat in the watershed. Lynda V. Mapes, Lower Elwha Klallam Tribe Celebrates,
html/localnews/2016084054_1elwhatribe18m.html (last visited Nov. 18, 2012).
55 See BROWN, supra note 36, at 72.
56 Wunderlich et al., supra note 34, at 11.
the fall chinook—were virtually eliminated from the Elwha ecosystem.57 Even populations of fall chinook, which spawned in the lower stretches of the river below the dams, were significantly reduced due to changing river habitat.58

Although the Elwha and Glines Canyon Dams wreaked havoc on the downstream ecosystem, the upper reaches of the Elwha River remained in near-pristine condition.59 In 1938, Congress created Olympic National Park, preserving nearly forty miles of the Elwha River, including Lake Mills up to the foundation of the Glines Canyon Dam.60 After 1938, the Glines Canyon Dam continued to operate on the border of the national park in a special use zone, allowing the dam to generate electricity despite the park’s preservation goals.61

\textbf{B. FERC Relicensing, Political Compromise, and Dam Removal Efforts}

The loss of wild anadromous fish and the adverse ecological effects on the Elwha River led to sustained efforts aimed at removing the dams and restoring the river’s ecosystem. In 1937, the first proposal to require dam removal and river restoration on the Elwha River failed in the Washington state legislature.62 Fifty years later, a challenge to the relicensing of the Glines Canyon Dam evolved into a broad political effort to force the removal of the dams.63 Nearly a century after construction of the Elwha Dam, the removal of the dams is ongoing as of this writing; wild salmon are expected to return to the headwaters within a few years.64

57 See Brown, \textit{supra} note 36, at 72; Wunderlich et al., \textit{supra} note 34, at 13.
61 Glines Canyon Dam is located on a private property inholding within the boundaries of the park. See Charles Gowen et al., \textit{The Role of Ecosystem Valuation in Environmental Decision Making: Hydropower Relicensing and Dam Removal on the Elwha River}, 56 Ecological Econ. 508, 510 (2006) (noting that in 1938, “Congress established Olympic National Park (ONP) on lands surrounding the Glines project”); \textit{see also} Elwha River Restoration FEIS, \textit{supra} note 58, at 18.
62 State Representative Francis Perkins introduced legislation in 1937 that would have required dam removal and restoration of the Elwha River. The legislation failed after the Washington Director of Fisheries declined to support the proposal. See Brown, \textit{supra} note 36, at 94.
63 See Bender, \textit{supra} note 22, at 223–29.
1. Relicensing the Dams

The ultimately successful campaign to remove the dams began in the 1970s as a challenge to the relicensing of the Glines Canyon Dam. In 1973, the dam owners, whose fifty-year license would expire in 1976, submitted an application to FERC to relicense the dam. The application created a controversy over whether FERC possessed the authority to license the dam, now located on the border of Olympic National Park. Opponents claimed that the relicensing conflicted with the park’s preservation goals, especially because the reservoir, Lake Mills, flooded portions of the park. Without a FERC license to operate, opponents claimed that the dam would have to be removed.

In 1978, the Elwha Dam failed a federal safety inspection, causing alarm for downstream landowners and sparking increased interest in dam removal. Out of concern for its reservation property downstream and the loss of traditional fisheries, the Lower Elwha Klallam Tribe became the first major advocate for complete dam removal and restoration. In 1986, the tribe intervened in the licensing proceedings before FERC, requesting denial of the application and removal of the dams. In the years after 1986, environmental organizations, the U.S. Fish and Wildlife Service (FWS), the National Marine Fisheries Service (NMFS), and the National Park Service (NPS) joined the tribe in opposition to the dams’ relicensing.

In response to this opposition, FERC took the position that it possessed the authority under the Federal Power Act to relicense the Glines Canyon Dam. Although Lake Mills was located within Olympic National Park, the
dam and the land underneath the dam were located on private land; therefore, FERC claimed it could grant the license to generate hydropower. In a 1990 decision, FERC concluded that the agency had jurisdiction to relicense the dams and dismissed the intervenors’ claims. The tribe, environmental organizations, FWS, and NMFS appealed FERC’s jurisdictional ruling to the Ninth Circuit.

While litigation over FERC jurisdiction was working its way through the courts, support grew for the efforts to remove the dams. Politicians from Washington State and across the country began to take notice of the controversy. In a move that signaled his support for dam removal, Representative John Dingell of Michigan requested a General Accounting Office (GAO) study of whether FERC had jurisdiction to relicense the dams. In 1991, FERC released a draft environmental impact statement (EIS) that concluded dam removal was feasible and could restore the Elwha River’s fisheries. The feasibility of dam removal, combined with the potential for a lengthy legal quagmire over the question of federal jurisdiction, eventually led to a compromise between the environmental interests advocating for dam removal and the dam owners and electricity customers arguing for relicensing.

2. Political Compromise and Funding for Removal

The political compromise that resulted in the federal purchase and removal of the Elwha and Glines Canyon Dams was a product of Congressman Dingell and multiple stakeholders’ efforts to end the legal stalemate over FERC jurisdiction. Key stakeholders in the process were the advocates for dam removal and restoration, including environmental organizations, the tribe, FWS, NMFS, and the NPS. Dam removal advocates hoped for the complete removal of the dams in order to restore the degraded Elwha River, producing a naturally flowing river with native fish populations.

The Elwha region’s community, including the city of Port Angeles, Washington, ended up in the middle of the political fight. Testimony before

77 Id. ¶ 61,263.
78 Id. ¶ 61,269.
79 Id. ¶ 61,271.
80 Busch, supra note 32, at 18.
81 See Bender, supra note 22, at 225–26 (noting that “every federal agency involved supports dam removal”).
83 The GAO, now the Government Accountability Office, concluded that FERC lacked jurisdiction to license a hydroelectric dam located within the borders of a national park. See JEFF CRANE, FINDING THE RIVER: AN ENVIRONMENTAL HISTORY OF THE ELWHA 152 (2011).
84 GLINES AND ELWHA DRAFT EIS, supra note 1.
85 See Busch, supra note 32, at 19.
86 Id. (discussing the political compromise that resulted in the federal purchase and removal of the Elwha and Glines Canyon Dams); see CRANE, supra note 83, at 147–49 (discussing the pivotal efforts of Congressman Dingell in effectuating the compromise).
87 Id. at 9.
the U.S. Senate Committee on Energy and Natural Resources revealed the community’s fears that major changes in the area would affect its economic stability, the city’s water supply, and its general way of life.\footnote{Elwha River Ecosystem and Fisheries Restoration Act: Hearing on S. 2527 Before the S. Comm. on Energy and Natural Res., 102nd Cong. 120 (1992) (statement of James D. Hallett, Mayor, Port Angeles, Washington).} In response to political negotiations over the future of the dams, Port Angeles formed the Elwha Citizens Advisory Committee, which eventually reached a consensus in support of dam removal.\footnote{The advisory committee determined that the benefits of restoring salmon populations outweighed other concerns, such as property values and removal costs. See Harry Lydiard, A Remarkable Grassroots Effort: The Work of the Elwha Citizens’ Advisory Committee, OLYMPIC PARK ASSOC. NEWSL., June 1996, http://www.drizzle.com/~rdpayne/opa-news-v4n1.html (last visited Nov. 18, 2012).}

On the other side of the controversy, the dam owners, James River Corporation, and power consumers, like Daishowa American Paper Mill, opposed dam removal.\footnote{See Bender, supra note 22, at 226.} In the early 1990s, the Daishowa American mill operated one of the largest mills in Port Angeles,\footnote{See Hearing on S. 2527, supra note 88, at 111 (statement of Steve Taniguchi, Executive Vice President, Daishowa America Co.) (testifying that “Daishowa America is the second largest employer in Clallam County”); see also Brown, supra note 36, at 72 (noting that the mill, then owned by Crown Zellerbach, used the power generated by the dam to run the first of the large lumber mills located in Port Angeles).} relying on hydroelectric power from the Elwha dams to supply between 34% and 42% of the mill’s electricity.\footnote{Hearing on S. 2527, supra note 88, at 117.} The mill received favorable rates from the dams and opposed dam removal, which allegedly would jeopardize the mill’s economic viability.\footnote{See Gowan et al., supra note 61, at 510 (stating that the primary benefit of the dams was their ability to provide electricity at less than half the rates charged by competitor electricity providers).}

In 1992, advocates for dam removal reached a compromise with the James River Corporation and the Daishowa mill.\footnote{See Bender, supra note 22, at 226–27.} Both sides foresaw a lengthy and costly legal battle over the future of dam relicensing and agreed to a congressional compromise that promised favorable terms to both sides.\footnote{See Busch, supra note 32, at 18.} The ensuing 1992 Elwha River Ecosystem and Fisheries Restoration Act\footnote{Elwha River Ecosystem and Fisheries Restoration Act, Pub. L. No. 102-495, 106 Stat. 3173 (1992) (codified at 16 U.S.C. §§ 796(2), 797a, 797c (2006)).} authorized the Department of the Interior to purchase the Elwha and Glines Canyon Dams,\footnote{Id. § 3(a).} directed Interior to study the feasibility for removal and complete restoration of the ecosystem,\footnote{Id. §§ 3(c), 4.} and provided a guarantee that the customers of Elwha hydroelectricity would receive power from other electricity providers at fair market rates.\footnote{Id. § 5(b).} The Elwha Act thus ended the conflict of FERC jurisdiction over relicensing by granting the dams...
permission to operate temporarily until the federal government appropriated funds to purchase the dams.100

Although the Elwha Act settled the conflict over the future of the dams, the appropriation of federal funds for the purchase and deconstruction of the dams created a new political controversy.101 The Act authorized the Department of the Interior to purchase and remove the dams but left the appropriation of funds to future acts of Congress.102 Initially, the Elwha Act received broad political support, from both Democrats and Republicans.103 But in the years following the 1994 congressional elections, the political atmosphere changed.104 An original supporter of the Elwha Act, Senator Slade Gorton (R-WA) withdrew his support for appropriations and later conditioned federal funding for the removal of the Elwha dams on guarantees that the federal government would not breach dams on the Snake River.105 Senator Gorton proceeded to prevent passage of numerous appropriations bills in the Senate from 1992 to 2000, but in 2000 he eventually lost a reelection bid to Democrat Maria Cantwell.106 In 1998, Congress appropriated $29.5 million for the Department of the Interior to buy both dams.107

Appropriations for the deconstruction of the dams occurred in stages from 2000 to 2010.108 Champions of dam removal in Congress, including Representative Norman Dicks of northwest Washington, secured about $20 million per year in funding for the removal.109 By 2004, funding for the Elwha restoration totaled $126.7 million, roughly half of the initial estimated

\begin{itemize}
\item 100 See Elwha River Ecosystem and Fisheries Restoration Act, 16 U.S.C. §§ 796(2), 797a, 707c (2006).
\item 101 See Busch, supra note 32, at 20.
\item 103 See LOWRY, supra note 82, at 146.
\item 105 See LOWRY, supra note 82, at 146–47; Bender, supra note 22, at 228.
\item 106 See LOWRY, supra note 82, at 149. The lack of funding for the Elwha restoration throughout the 1990s became known as the “lost decade.” Adam Burke, River of Dreams, HIGH COUNTRY NEWS, Sept. 24, 2001, at 11.
\item 108 See Kim Todd, Rebuilding a River as Washington’s Elwha Dams Come Down, HIGH COUNTRY NEWS, Sept. 19, 2011, at 18. Former Senator Bill Bradley stressed that the effort to remove the Elwha Dams resulted from a truly bipartisan effort in Congress, and was supported by Democrats and Republicans in Washington, D.C. and Washington State. See Senator Bill Bradley, Former U.S. Senator from N.J., Keynote Address at a Dinner Hosted by the Lower Elwha Klallam Tribe (Sept. 16, 2011) (on file with authors).
\end{itemize}
removal cost of $246 million to $272 million.\footnote{ELWHA RIVER RESTORATION FEIS, supra note 58, at 96. Revisions to this early estimate placed costs at around $325 million. Todd, supra note 108.} Stimulus funding from the 2009 American Reinvestment and Recovery Act contributed an additional $54 million.\footnote{See Todd, supra note 108.} In April 2010, the National Park Service, which operated as lead agency in managing the Elwha dam removals and restoration, awarded the contract to conduct the removal of both dams, indicating that the total appropriation for complete removal and restoration was in hand.\footnote{See Paul Gottlieb, Dam Removal Contract Comes in $13 Million Under Estimate, PENINSULA DAILY NEWS, Aug. 27, 2010, http://www.peninsuladailynews.com/article/20100827/NEWS/308279992/0 (last visited Nov. 18, 2012).}

3. The Removal

The three-year process of removing the dams began during the summer of 2011. The first step involved the drawdown of both reservoirs, Lake Mills and Lake Aldwell.\footnote{See Nat’l Park Serv., Dam Removal Strategies, http://www.nps.gov/olym/naturescience/dam-removal-overview.htm (last visited Nov. 18, 2012).} On September 15, 2011, engineers began the removal of the Glines Canyon Dam by “notching” a top section of the dam and allowing the reservoir to drain out of the notched area.\footnote{See id.} The 173-foot dam will be notched in sections, creating temporary spillways and draining the reservoir until the entire concrete structure is removed.\footnote{See id.} On September 19, 2011, removal of the Elwha Dam began with the creation of a diversion around the dam.\footnote{See id.} Engineers created cofferdams to channel water into the diversion so that the concrete structure could be removed in pieces.\footnote{See id.} When both dams are completely removed in 2014, the stream channel will be restored to resemble pre-dam conditions.\footnote{For live video streams of the dam removal process, see Nat’l Park Serv., Elwha River Webcams, http://www.nps.gov/olym/photosmultimedia/elwha-river-webcams.htm (last visited Nov. 18, 2012). For photographs of the restoration process, see John Gussman, ElwhaFilm.com, http://www.elwhafilm.com/finalsitch (last visited Nov. 18, 2012).}

C. Restoring the Elwha River

The removal of two 100-year-old dams presented serious concerns about its positive and negative ecological effects to the Elwha ecosystem.\footnote{See Dam Removal Strategies, supra note 113. In March 2012, engineers opened the upper stretches of the Elwha River to salmon for the first time in almost a century. Excavators removed enough of the Glines Canyon Dam to allow the river to flow through the remaining structure. Observers hope to see chinook salmon returning to the upper reaches within months. E-mail from Thomas C. Jensen, Partner, SNR Denton, to Michael C. Blumm (Mar. 17, 2012, 21:46 PDT) (on file with authors).} During the dam removal, the NPS will attempt to minimize the short-term
environmental effects by removing both dams slowly and in sections. Project planners ruled out blasting the dams because of the potential for damage caused by the immediate release of 24 million cubic yards of sediment trapped behind the dams. The NPS concluded that a slow removal, using natural hydrologic erosion to rebuild the river channel was the best option for restoration.

After three years of dam deconstruction and engineering new channels on the footprints of the dams, scientists estimate that it will take about thirty years for the Elwha River to return to its normal flows and sediment loads. In the long-term, scientists predict that the dam removals will have positive effects on the hydromorphology, biology, and overall ecology of the Elwha ecosystem. Ecologists expect anadromous fish to return to spawn in upstream segments of the Elwha sometime in the next three years, marking the first time in over 100 years that wild salmon will spawn in the upper Elwha.

III. THE WHITE SALMON RIVER: REMOVING THE CONDIT DAM

The White Salmon River flows south from its glacial headwaters on the slopes of Mount Adams in south central Washington to its confluence with the Columbia River on the Washington-Oregon border. The forty-five mile long river cuts through canyons and confined valleys formed of basalt from historic volcanic eruptions and carries high sediment loads resulting from

120 See Dam Removal Strategies, supra note 113.
123 See Tearing Down the Elwha River Dam, supra note 33; Howard, supra note 122.
124 See Ellen K. Mussman et al., Predicting Secondary Reservoir Sediment Erosion and Stabilization Following Dam Removal, 82 N W. SCI. (SPECIAL ISSUE) 236, 244 (2008) (concluding that erosion will restore the stream channel).
128 See NW. POWER & CONSERVATION COUNCIL, DRAFT WHITE SALMON SUBBASIN SURVEY 1 fig.1 (2000).
the erosion of deposits left by lahars, which were common throughout the White Salmon watershed. Anadromous fish, including chinook, coho, chum, steelhead, and sea-run cutthroat trout were once common in the lower reaches of the river and tributaries, which provided pristine spawning habitat and cold-water refuges for fish migrating up the Columbia River. Until the construction of the Condit Dam near the mouth of the White Salmon blocked all but the lower three miles for anadromous fish passage, the area’s first inhabitants, the Yakama Tribe, carried out a centuries-old tradition of fishing and sustaining themselves on salmon caught near Husum Falls.

A. Condit Dam Construction

Population growth in the Columbia River Gorge at the beginning of the 1900s led to an increased demand for electricity to power the region’s chief economic activity—paper mills. In 1911, the Crown Columbia paper mill of Camas, Washington, one of the largest paper mills on the Pacific Coast, formed the Northwestern Electric Company in order to build a hydroelectric power facility to supply energy to the mill. The White Salmon’s exposed rock canyon walls, steep gradient, and high potential energy provided an ideal placement for a hydroelectric project. In 1912, engineers completely diverted the river around the dam site 3.3 miles upstream from the river’s mouth and used 30,000 cubic yards of concrete to construct the solid...
concrete gravity dam. The completed Condit Dam stood 125 feet tall, spanned 471 feet wide, and formed Northwestern Lake, a 2.3-mile long, 97-acre reservoir.

The Condit Dam’s power plant produced about 15 MW of electricity, a significant source of power in the early 1900s. The Crown Columbia paper mill used only 20% of the electricity, so Northwestern Electric marketed the remaining 80% throughout the Columbia River Gorge, including to the cities of Portland, Oregon and Vancouver, Washington. Completion of the Condit Dam coincided with a downturn in the area’s economy from 1913 to 1915, which provided Northwestern an advantage in the electricity market because it could supply power from the Condit project more cheaply than its competitors. In the first years of power production, Northwestern supplied one-third of the area’s market share and was hugely profitable; the company later merged with the Pacific Power and Light Company in 1947, which became PacifiCorp in 1984.

The Condit Dam completely blocked fish passage from the lower 3.3 miles of the White Salmon to the upper sections of the river and tributaries. As part of the original design, the dam included wooden fish ladders; however, within the first few years after construction spring floods destroyed the wooden ladders, as well as their concrete replacements, which were not designed to withstand high water. From 1917 until the dam’s removal in 2011, the Condit Dam provided no fish passage facilities, resulting in a catastrophic decline in the river’s native fish populations. Prior to dam removal, migrating anadromous fish were no longer present in the upper White Salmon River, and most fish spawning in the lower 3.3 miles were hatchery fish. By removing the Condit Dam, biologists estimated that an

136 See id. at 1, 31–32.
137 See id. at 9, 40.
138 See Becker, supra note 21, at 818.
139 See PACIFICORP, supra note 133, at 18–19.
140 Id. at 19.
141 Id. at 19–20.
144 See Becker, supra note 21, at 818; Bonham, supra note 143; CONDIT HYDROELECTRIC PROJECT FEIS, supra note 129, at 3-28 to 3-29
145 See CONDIT HYDROELECTRIC PROJECT FEIS, supra note 129, at 3-16 to 3-21; Bonham, supra note 143.
additional fourteen miles of salmon spawning habitat and thirty-three miles of steelhead habitat would be accessible in the upper river and tributaries.146

\textbf{B. The Federal Power Act, Relicensing, and Dam Removal Efforts}

Since completion of the Condit Dam preceded federal laws regulating the construction and operation of non-federal dams, the dam received its first twenty-year license in 1968,147 after the U.S. Supreme Court interpreted the Federal Power Act of 1935 (FPA)148 to reach non-navigable tributaries of navigable waters.149 Near the expiration date of Condit’s operating license, FERC began the dam relicensing process.150 In 1996, FERC issued a final EIS on the license renewal that required the dam operator, PacifiCorp, to construct permanent fish passage facilities, making the continued operation and relicensing of the dam uneconomical.151 As a result, in 1999, PacifiCorp signed a settlement agreement with the Yakama Tribe and environmental groups to withdraw the license renewal request and remove the Condit Dam.152 For the next twelve years, a staggering complexity of federal and state bureaucracies, permitting requirements, and community opposition delayed the eventual removal of the dam.

\textit{1. The Federal Power Act and FERC Relicensing}

Since 1920, the FPA has authorized FERC to license non-federally owned dams operating on the navigable waters of the United States.153 Section 18 of the FPA requires every non-federal dam applying for licensing to provide for the “construction, maintenance, and operation by a licensee at its own expense of... such fishways as may be prescribed by” FWS or NMFS.154 In 1986, Congress amended the FPA to require FERC to condition

146 See WASH. DEP’T OF ECOLOGY, DRAFT SUPPLEMENTAL EIS: CONDIT DAM REMOVAL 4.3-22 (2005) [hereinafter WASHINGTON DSEIS]; Becker, supra note 21, at 819. Since 1917, the Yakama Tribe has been unable to exercise their legal right to fish for salmon and steelhead at their “usual and accustomed” fishing sites. See Becker, supra note 21, at 820. Condit Dam also blocked recreational opportunities, including the potential for world-class white water kayaking and rafting. Id.

147 CONDIT HYDROELECTRIC PROJECT FEIS, supra note 129, at 3-29; see Bonham, supra note 143, at 99.

150 Becker, supra note 21, at 824.

151 Id. at 824–26.

152 See id. at 826–27.

licenses on the implementation of measures recommended by federal and state wildlife agencies to protect and mitigate potential damages to fish and wildlife. In addition to protecting fish and wildlife, state agencies may also impose water quality conditions on non-federal dam operators, and FERC must include the state water quality standards in the license.

The first twenty-five year FERC license granted to the Condit Dam contained few fish requirements, although it did include a condition for maintaining minimal flows downstream from the dam. In 1982, in anticipation of the expiration of the license and out of concern for the ESA-listed salmon and steelhead in the Columbia River Basin, the Northwest Power and Conservation Council (NPCC), an interstate compact agency charged by Congress with restoring Columbia Basin salmon runs, adopted the position that any relicensing of the Condit Dam should include provisions for fish passage. Soon after this first call for fish passage facilities, the Yakama Indian Nation, the Columbia River Inter-Tribal Fish Commission (CRITFC), and multiple environmental groups began advocating for removal of the Condit Dam or, at least, the installation of adequate fish passage to promote salmon recovery. In 1991, PacifiCorp submitted an application for relicensing the Condit Dam, proposing to implement several changes to the license, including increasing the operating capacity of the power plant, establishing target flows to benefit fish habitat, and carrying out other projects to facilitate recreation and cultural preservation.

Amid a charged political atmosphere concerning dam removal, FERC began work on a draft EIS on the relicensing of the Condit Dam. FERC’s
final EIS in 1996 included the fishway prescriptions of the FWS and NMFS, conditioning the relicensing of the dam on the installation of upstream and downstream fish passage facilities. In 1997, PacifiCorp requested that FERC stay a final decision on the relicensing application because the cost of the required fish passage facilities, $30 million, made relicensing the Condit Dam uneconomical. Instead of making the improvements and investments necessary to relicense the dam, PacifiCorp decided to pursue the most economically efficient alternative: dam removal.

2. The 1999 Agreement, Federal and State Regulatory Approval, and License Forfeiture

In 1999, PacifiCorp entered into a settlement agreement with the Yakama Tribe, CRITFC, and several environmental groups, in which the company agreed to begin dam removal by October 2006. The agreement capped removal costs at $17.15 million and allowed PacifiCorp to continue operating the dam until 2006. The removal plan called for blasting the dam and leaving the sediments in place to minimize costs. PacifiCorp submitted the agreement to FERC in 1999. However, the novel issue of whether FERC should construe the agreement as surrendering the operating license or modifying the application to renew the license occupied the agency for two years. Finally, in 2002, FERC issued a supplemental EIS approving the removal plan and determining that the agency would treat the agreement as a license surrender, contingent on PacifiCorp receiving the necessary approvals from other federal and state regulatory agencies.

The presence of at least five ESA-listed species of fish in the White Salmon ecosystem also necessitated consultation with the FWS and NMFS, and a determination that the removal plan would not adversely affect the listed species or their critical habitat. In 2004, the FWS designated critical habitat for bull trout in the river, concluding in its biological opinion (BiOp)
that dam removal would benefit the species despite insignificant,
short-term harms.173 In 2006, NMFS reached the same conclusion concerning
ESA-listed salmon.174

In addition to the time spent waiting for biological studies and federal
agency approval, the Condit Dam removal suffered from delays due to state
and local regulations.175 Almost immediately after PacifiCorp announced that
it intended to remove the Condit Dam, local opposition, particularly from the
Washington counties of Klickitat and Skamania, made clear that local
regulations and requirements would be used to delay or derail the dam
removal proposal.176 The counties objected to the dam removal project
because of the possible negative effects on the aesthetic views of
homeowners along the river, the loss of recreation on Northwestern Lake,
and the remediation plan that called for leaving sediments in place.177 The
counties advised FERC and PacifiCorp that the project would have to satisfy
local regulations, including requirements for floodplain, zoning, shoreline,
noise, and road permits.178 PacifiCorp appealed to FERC for relief from the
counties’ attempt to delay the dam removal process.179 In 2006, FERC issued
an order declaring that the FPA preempted state and local laws unless FERC
chose to include such laws in the license or a license surrender order.180

The threat of a lawsuit from the counties prompted the state of
Washington, a supporter of dam removal, to decide to conduct its own
environmental analysis of the dam removal.181 The state’s Department
of Ecology issued a state EIS in 2007, which acknowledged that water quality
and fish would be negatively affected in the short term.182 The state EIS
included mitigation measures for some of the possible short-term effects
that would occur due to blasting the dam and releasing massive amounts of
water and sediments.183

173 See Becker, supra note 21, at 839–40.
174 See id. at 840.
175 See id. at 839.
176 See id. at 840–41.
177 See id. at 828; Becky Blanton, PacifiCorp, State and Federal Agencies Accused of
Conspiracy, SIERRA TIMES, Nov. 30, 2001 (On file with authors).
178 See Letter from Curt Dreyer, Klickitat County Planning Dep’t, to Gail Miller, PacifiCorp
179 See PacifiCorp’s Petition for Declaratory Order on Preemption at 12, Condit
180 Order on Petition for Declaratory Order, PacifiCorp, 115 FERC ¶ 61,194 (2006).
181 See Becker, supra note 21, at 839, 841.
182 WASHINGTON DSEIS, supra note 146, at 1-12 to 1-18. See Washington State Environmental
Policy Act, WASH. REV. CODE § 43.21C.030(2)(c) (2005) (requiring an EIS for proposed actions
with significant environmental impacts).
183 WASHINGTON DSEIS, supra note 146, at 1-12 to 1-22. Washington continued to supplement
the DEIS from 2007 to 2010. A final supplemental EIS was completed in January, 2010. WASH.
DEP’T. OF ECOLOGY, CONDIT DAM REMOVAL FINAL SECOND SUPPLEMENTAL ENVIRONMENTAL
0912017.pdf.
Before beginning the dam removal, PacifiCorp needed a section 401 certification from the state of Washington to confirm that the project met the state’s water quality standards under the Clean Water Act. In 2003, Washington amended the state’s water quality standards to include a short-term exemption for remediation projects. The state concluded that the short-term harms of the dam removal project were outweighed by its long-term benefits, and in 2010, the state issued the required section 401 certification.

After obtaining the section 401 certification, PacifiCorp received the final permits necessary from the U.S. Army Corps of Engineers, under section 404 of the Clean Water Act and section 10 of the Rivers and Harbors Act. In 2011, FERC accepted PacifiCorp’s license surrender. Twelve years after agreeing to removal, PacifiCorp had satisfied all of the federal and state procedures and received the necessary permits to begin removing the Condit Dam.

3. The Dam Removal Process

On October 26, 2011, the Condit Dam was breached, and the removal of the nearly century-old structure began. Engineers cleared sediment and debris immediately upstream from the dam, and then drilled and blasted a thirteen-by-eighteen foot drain tunnel at the base of the dam. The final blast sent a rush of water downstream at a rate of over 10,000 cubic feet per second into the lower White Salmon, releasing as much as 2.4 million cubic yards of sediment trapped upstream in the reservoir. The reservoir drained through the tunnel in approximately six hours, opening space in the reservoir for engineers to begin remediation activities, including bank

185 See Wash. Admin. Code § 173-201A-330(4)(a), 320(4)(a) (2011) ("[R]emediation of environmental or public health threats" is one of several factors to consider when deciding to lower water quality standards as part of a "temporary action necessary to protect the public interest.").
189 Order on Rehearing, Denying Stay, and Dismissing Extension of Time Request, PacifiCorp, Project No. 2342-021, 135 FERC ¶ 61,064 (Apr. 21, 2011).
192 Id.
stabilization and the excavation and removal of the dam structure.\footnote{Id.}
Removals of the dam structure and the original cofferdam continue as of this writing.

\textit{C. Restoring the White Salmon River}

Ecologists expect the negative short-term effects of the dam removal, including increased turbidity and downstream fish kills, to be outweighed by the long-term benefits within six to twelve months after removal.\footnote{See \textsc{Washington DSEIS}, supra note 146, at 1-9.} In order to mitigate potential short-term adverse effects, biologists trapped 500 chinook salmon from the lower Columbia and White Salmon Rivers and transported them upstream.\footnote{See Rod Engle et al., \textsc{U.S. Fish \& Wildlife Serv.}, \textsc{Capture and Transport of Lower Columbia River Fall Chinook Salmon Plan, Condit Hydroelectric Project Decommissioning} 2 (2011).} After blasting the dam and releasing sediments from the reservoir, fishery biologists expect the increased salmon and steelhead habitat to benefit the fish populations and the entire ecosystem.\footnote{Becker, supra note 21, at 819–821.}

\textit{IV. THE SANDY RIVER BASIN: DECOMMISSIONING THE BULL RUN HYDROELECTRIC PROJECT}

The Sandy River drains the northwest slopes of Mt. Hood in western Oregon, flowing from its glacial headwaters over volcanic ash and rock deposits for more than fifty miles to the Columbia River.\footnote{See Barbara Taylor, \textsc{Salmon and Steelhead Runs and Related Events of the Sandy River Basin: A Historical Perspective} 5 (1998).} The river and its tributaries receive water from high volumes of rain and snow precipitation in the Cascade Range, glacial melts, and groundwater recharge.\footnote{See id. at 8.} Large amounts of fine suspended sediment, glacial silt caused by the slow-grinding glacial erosion of underlying rocks, and sand deposits found throughout the basin contributed to the river’s nomenclature.\footnote{See id. at 10.} The shallow gravel beds created ideal spawning habitat for the abundant populations of migrating salmon and steelhead that traveled upstream from the Columbia River to the Sandy River’s headwaters.\footnote{See id. at 12–13, 28.} Historically, the first inhabitants of the area, tribes from villages along the Columbia and Clackamas Rivers, used trails following the Sandy River to upland hunting and gathering grounds, and they fished the abundant salmon runs in the river and its tributaries.\footnote{Id. at 13–14; see also \textsc{U.S. Forest Serv.}, \textsc{Upper Sandy National Watershed Analysis} 1 (1996).}
A. The Little Sandy and Marmot Dams

In the late 1800s, population and industrial growth in Portland, Oregon produced widespread interest in using nearby rivers for water supplies and hydroelectricity.202 Developers soon invested in small dams and diversions to bring water from the Bull Run River, a tributary of the Sandy River, to Portland, thirty miles west of the Bull Run and Sandy confluence.203 In 1906, the Mt. Hood Railway and Power Company, which later became Pacific Gas Electric (PGE), constructed a powerhouse along the Bull Run River and a small diversion dam on the Little Sandy River, a tributary of the Bull Run.204 The Little Sandy Dam stood sixteen feet high and completely blocked the flow of the Little Sandy River 1.7 miles upstream from its confluence with the Bull Run.205 The dam channeled the Little Sandy River into a wood box flume diversion, which carried the water more than three miles to Roslyn Lake where the Mt. Hood Company stored the water for releases to generate electricity at the Bull Run powerhouse.206 Completion of the Little Sandy Dam in 1912 blocked salmon passage to upstream sections of the Little Sandy River and drastically reduced downstream flows.207

The success of the Little Sandy Dam and Bull Run powerhouse led to an increased demand for water supplies to bolster hydroelectric output from the project. In 1913, the Mt. Hood Company constructed the Marmot Dam on the mainstem of the Sandy River.208 The Marmot Dam diverted stream flows into tunnels and canals that transported the water north across the hydrologic divide that separated the mainstem of the Sandy River from the Little Sandy.209 The series of diversion channels, including nearly mile-long tunnels bored underneath the mountains separating the two watersheds, transported water from the Sandy River into the Little Sandy, upstream of the Little Sandy Dam.210 Since 1913, the Bull Run powerhouse supplied about 22 MW of electricity to consumers in the Portland area.211

The original Marmot Dam consisted of a wood frame structure filled with rock and sediment to divert stream flows into the diversion canals.212 Engineers included a wooden fish ladder to allow salmon to travel upstream and, as a result, the dam never completely blocked upstream salmon passage to pristine spawning habitat above the dam.213 In 1989, the current dam

202 See TAYLOR, supra note 197, at 15.
203 See id. at 22; see also City of Portland, Bull Run Watershed, http://www.portlandoregon.gov/water/29784 (last visited Nov. 18, 2012).
204 See id.
205 See id. at 22, 39.
207 See TAYLOR, supra note 197, at 39.
208 Id. at 22.
209 See id.
210 See id.
211 See Portland General Electric, supra note 206.
212 See TAYLOR, supra note 197, at 39.
213 See id. at 23.
owner, PGE, rebuilt the Marmot Dam by replacing the original thirty-foot wood frame and rocks with a forty-seven-foot concrete structure,214 complete with modernized fish ladders.215 However, problems with downstream passage of salmon continued to wreak havoc on the river’s fish populations.216 The diversion channels funneled downstream migrating salmon into the long tunnels and canals, killing them or depositing them in the Little Sandy River where they would face another dam and diversion to Roslyn Lake.217 Beginning in 1951, fishery biologists attempted to prevent salmon from entering the diversions with screens and collection points within the canals and tunnels.218 Despite these efforts, downstream passage remained perilous for migrating salmon.219

The Bull Run hydroelectric project (Little Sandy and Marmot Dams, their diversions, and the Bull Run powerhouse) caused significant environmental declines in the Sandy River watershed. Historic salmon runs totaled tens of thousands of coho, fall and spring chinook, and winter steelhead.220 The dams and diversions reduced the Sandy River basin’s fish population to between 10% and 25% of historic runs.221 The hydroelectric project also drastically reduced stream flows in the Sandy and Little Sandy Rivers.222 Although a 1973 agreement established minimum instream flows for the Sandy River below the Marmot Dam, the diversions continued to reduce flows and instream habitat for ten miles below the dams.223

B. The Settlement Agreement to Remove the Dams

The history of the Little Sandy and Marmot dam removals in the Sandy River basin contrasts significantly with the sagas that unfolded in the Elwha and White Salmon basins.224 The Sandy River dams, like the Elwha, Glines Canyon, and Condit Dams, produced profitable hydroelectricity for urban areas.225 Yet the operator of the Sandy River dams, PGE, decided early in the FERC relicensing process to surrender the license and remove the dams voluntarily.226 A settlement agreement signed by PGE, federal agencies, environmental organizations, and state and local governments in 2002

214 See id. at 39.
215 See id. at 23.
216 See id. at 23–24.
217 See id.
218 See id. (demonstrating continued efforts to reduce salmon mortality).
220 See TAYLOR, supra note 197, at 1.
221 See id. (comparing runs to 1890 levels).
222 PGE diverted up to 800 cubic feet per second of combined flow from the rivers. BULL RUN DEIS, supra note 219, at 7; TAYLOR, supra note 197, at 22.
223 See TAYLOR, supra note 197, at 9; BULL RUN DEIS, supra note 219, at 4, 5.
224 See Becker, supra note 21, at 832 n.135.
225 See id.; cf TAYLOR, supra note 197, at 21–22 (describing how the need for low-cost hydropower led to the development of hydropower projects in the Sandy River basin).
226 See Application to Amend and Surrender License, Bull Run Hydroelectric Project, 1–2 FERC No. P-477-024 (Nov. 12, 2002).
coincided with PGE’s license surrender to FERC.227 River restoration work began less than six years later, with PGE paying for the complete removal of the dams and diversion channels.228

1. The Settlement Agreement and FERC License Surrender

The Little Sandy and Marmot Dams received their first FERC license in 1980,229 authorizing the hydroelectric dams to operate for a thirty-year term that expired in 2004.230 Near the end of the thirty-year period, PGE considered relicensing the project, but after studying the potential conditions and prescriptions associated with FERC relicensing, “PGE determined that the likely cost of environmental protection, mitigation, and enhancement measures associated with relicensing would make continued operation of the Project uneconomical.”231 In 1999, PGE notified FERC that the company did not intend to relicense the dams.232 FERC responded by giving PGE until 2002 to develop a plan to surrender the current license and remove the dams.233

In 2001, PGE convened a meeting of stakeholders, including environmental organizations, federal agencies, and state and local officials, to discuss removing the dams.234 The settlement agreement produced a timeline for removal and established that PGE would pay all costs of removal and restoration.235 All parties agreed that the Bull Run hydroelectric project would remain operational until November 2007, and that the Marmot and Little Sandy Dams would be removed in the fall of 2007 and 2008, respectively.236 In 2003, just eighteen months after entering the settlement

\begin{itemize}
\item 228 See id. at 71; see also Application to Amend and Surrender License, supra note 226, at 32–33.
\item 230 Request for Approval of Decommissioning Settlement Agreement, supra note 229.
\item 231 Id.
\item 232 Id.
\item 233 Id.
\item 235 Request for Approval of Decommissioning Settlement Agreement, supra note 229, at 4.
\item 236 Application to Amend and Surrender License, supra note 226, at 30; Order Approving Decommissioning Plan, 119 FERC ¶ 62,224 (June 14, 2007).
\end{itemize}
agreement,\footnote{Becker, supra note 21, at 832 n.135.} PGE secured the necessary environmental approvals for dam removal,\footnote{OR. DEPT. OF ENVTL. QUALITY, CLEAN WATER ACT § 401 CERTIFICATION FOR THE DECOMMISSIONING OF THE BULL RUN HYDROELECTRIC PROJECT (FERC PROJECT NO. 477), at 1 (2003).} and FERC completed an EIS on decommissioning the Bull Run hydroelectric project.\footnote{FED. ENERGY REGULATORY COMM’N, NO. 477-024 FINAL EIS: BULL RUN HYDROELECTRIC PROJECT, OREGON (2003).} FERC accepted PGE’s license surrender for the Little Sandy and Marmot Dams, and approved the decommissioning plan in 2004.\footnote{See Order Approving Decommissioning Plan, supra note 236, at 3.}

The process for approving dam removal in the Sandy River differed from projects on the Elwha and White Salmon Rivers in several respects. First, unlike the Elwha and White Salmon dams, the owner of the Sandy River dams agreed to pay for the complete removal without predetermined cost caps.\footnote{See Becker, supra note 21, at 832 n.135.} In 2002, PGE estimated that it would spend about $17 million on the dam removals and lose over $5 million because of decreased power production,\footnote{Application to Amend and Surrender License, supra note 226, at 32–33.} although the utility later adjusted the dam removal costs to $23.7 million in 2009.\footnote{Portland Gen. Elec. OPUC Docketed Filings: Direct Testimony and Exhibits, Revenue Requirements 9 (Feb. 27, 2008), www.portlandgeneral.com/our_company/corporate_info/regulatory_documents/filings/docketed_filings/UE-197/default.aspx (click on the “Revenue Requirements” link).} Second, the state and local governments fully supported the Sandy River dam removals by signing the settlement agreement and supplying the necessary environmental authorizations in less than two years.\footnote{See Becker, supra note 21, at 832 n.135.} Oregon also lacked a state environmental policy act, which counties in Washington used to delay the Condit Dam removal.\footnote{See id.} Third, unlike the Condit Dam where local landowners objected to the removal of Northwestern Lake’s recreational opportunities, the federal government owned much of the remote, unpopulated land surrounding the Sandy River dams, including the Mt. Hood National Forest and BLM lands.\footnote{See Energy Facility Siting Task Force, State of Or., Comparison of the Energy Facility Siting Requirements of Oregon, Washington, Montana, and California, in Report of the Energy Facility Siting Task Force, at A-233, available at http://www.oregon.gov/ENERGY/SITTING/docs/TFR/TFR_U.pdf.} Few private individuals owned land near the Sandy River dams, and the Forest Service and BLM supported dam removal.\footnote{Settlement Agreement Concerning the Removal of the Bull Run Hydroelectric Project, supra note 227, at 1–2}

The removal process for the Sandy River dams also proceeded as a hydroelectric license surrender, not an amendment to a license renewal.\footnote{See id. at 2.} Once PGE submitted the surrender request, FERC responded according to
established regulations. Unlike with the Condit Dam, where FERC struggled to determine how to treat an amendment for license renewal as a license surrender, with the Sandy River dam removals, the process of securing FERC approval occurred quickly in part because FERC now understood the procedures for license surrender.

2. The Removal Procedures

In September 2007, engineers used explosives to breach the Marmot Dam, releasing water and sediments trapped behind the dam. The explosion and sudden release of water washed much of the 900,000 cubic yards of sediment downstream, with the river eroding the remaining sediments in a matter of months. The last coffer dam was breached on October 19, 2007, ending the diversions and returning the rivers to natural flows. The final steps in the dam removal process—drainage of Roslyn Lake and removal of the Little Sandy Dam and diversion channels—occurred in May and September 2008, respectively.

C. Restoring the Sandy River Basin

PGE donated all lands that the company owned for the Bull Run hydroelectric project to a conservation organization, the Western Rivers Conservancy, which in turn provided the lands to the BLM for restoration projects. In the years following the Sandy River dam removals, the BLM engaged in restoration projects throughout the basin to return the ecosystem to its natural condition. After removal of the dams, stream flows returned to natural levels, restoring 6.5 miles of salmon habitat in the upper Little Sandy River and 10 miles in the lower Sandy River below the former Marmot Dam.

249 See 18 C.F.R. pt. 16 (2009) (governing takeover and relicensing requests); Order Granting Surrender Application, Adopting Proposed Terms, and Denying Application to Amend License, 107 FERC ¶ 61,158 (May 12, 2004).
250 See Becker, supra note 21, at 832 n.135; supra Part III.B.2.
251 See Michael Milstein, River Proves There’s Life After Dam, OREGONIAN, July 30, 2008, at A1, A7.
252 Id.
254 See Keil, supra note 234.
255 See FINAL EIS: BULL RUN HYDROELECTRIC PROJECT, supra note 239, at 8, 178.
257 See BULL RUN DEIS, supra note 219, at 4–5.
V. THE ROGUE RIVER: RESTORING THE WILD AND SCENIC RIVER

The Rogue River flows west for over 215 miles from its headwaters near Crater Lake to the Pacific Ocean.258 The river and its tributaries drain a significant land area in southwest Oregon,259 cutting through three mountain ranges and across four climate zones.260 For thousands of years before non-native settlement, the Rogue River’s abundant fisheries sustained native tribes in the area, providing over 4,000 river miles of salmon habitat.261 As non-native settlers populated the Rogue Basin in the nineteenth century, the river became widely known for plentiful wild salmon262—the largest population wholly in Oregon263—and recreational opportunities.264 The narrow rock canyons and steep gradients through the Cascade Range make the Rogue River an extremely popular whitewater river.265 In 1968, Congress designated the Rogue among the nation’s first wild and scenic rivers, protecting eighty-four miles of the lower river from development and preserving habitat for the remaining wild salmon.266

A. Fragmenting the River: Dams Throughout the Rogue Basin

During the late 1800s and early 1900s, population growth and agricultural activities in the Rogue River Basin created a demand for water and power to supply the region’s newest towns and farms.267 The Rogue Basin currently contains over eighty dams, ranging in size from small diversion dams to massive hydroelectric projects.268 Before dam removal on the Rogue began in 2008, returning adult salmon travelled over 107 miles from the Pacific Ocean in the near-pristine river before encountering their

259 The basin drains an area of over 5,000 square miles. See OR. DEP’T OF ENVTL QUALITY, ROGUE RIVER BASIN TOTAL MAXIMUM DAILY LOAD, at 1-2 (2008); Whitworth, supra note 258, at 187.
260 OR. DEP’T. OF ENVTL QUALITY, supra note 259, at 1-2 to 1-3.
262 The designated wild and scenic river portion extends from 7 miles west of Grants Pass to 11 miles east of Gold Beach. Bureau of Land Management, supra note 258.
263 Whitworth, supra note 258, at 189.
265 Ibid at 1.
267 See Whitworth, supra note 258, at 189–90.
first dam at Savage Rapids. About twenty miles upstream from the Savage Rapids Dam, the Gold Hill and Gold Ray Dams further segmented the river, hindering salmon passage to the upstream stretches and tributaries. But since 2008, dam owners have removed the Savage Rapids, Gold Hill, and Gold Ray Dams, and the U.S. Army Corps of Engineers has notched a fourth, the Elk Creek Dam, located upstream from the three mainstem dams on Elk Creek, a major tributary of the Rogue.

1. Savage Rapids Dam

In 1921, the Grants Pass Irrigation District (G PID), a private irrigation organization in Jackson and Josephine Counties, Oregon, constructed the Savage Rapids Dam about five miles east of Grants Pass, Oregon. Growing numbers of settlers in southern Oregon during the early 1900s demanded large amounts of water for irrigation, and the Savage Rapids Dam provided the means to divert Rogue River water into a series of irrigation canals for delivery to farms throughout the region. The thirty-nine-foot concrete gravity and arch dam created a small reservoir from which hydraulic turbines, a pumping plant, and gravity diversions channeled water into irrigation canals. Although the original dam included fish ladders, fish screens, and a fish bypass system installed in the 1970s, these measures never succeeded in preventing downstream-migrating juvenile salmon from entrainment in the irrigation system.

The high levels of fish mortality at the irrigation intake pump contributed to calls for the dam’s removal. In 1994, Oregon’s Water Resources Commission granted an extension for the GPID’s water right for withdrawal at Savage Rapids, but conditioned the extension on the GPID continuing to operate in a manner consistent with the public interest. The

274 The irrigation project consisted of over 160 miles of canals. See id.
275 Engineers built the Savage Rapids Dam as a “combination gravity and multiple arch concrete dam.” Id. at 3.
276 See id.
277 Even the most successful fish screens only managed to protect 90% of fish in the stream. See Whitworth, supra note 258, at 191.
279 Whitworth, supra note 258, at 196.

Electronic copy available at: https://ssrn.com/abstract=2101448
water right extension required the GPID to exercise “due diligence in implementing approved conservation and fish passage plans” for Savage Rapids Dam, which meant providing safe and effective fish passage for migrating salmon. The state commission interpreted the conditions in the water right to require removal of Savage Rapids Dam by 2001. In weighing the public interest factors, the agency concluded that dam removal would provide more benefits to the public than upgrading existing fish passage facilities and keeping the low-cost irrigation system in place.

Although GPID’s water right was conditioned on dam removal, members of the GPID board of directors and water users throughout the Rogue Basin remained steadfastly opposed to removing the Savage Rapids Dam. From 1994 to 1998, the GPID board stalled progress to secure federal authorization and funding for dam removal. Some GPID board members expressed their desire to “Save Savage Rapids Dam” in letters to members of Oregon’s congressional delegation, citing the dam’s benefits to the local community, including providing recreation on the reservoir, supplying low-cost irrigation, and maintaining high property values near the reservoir.

The GPID remained committed to the tradition and symbolism of the Savage Rapids Dam, refusing a deal with the federal government in which the government would pay for dam removal and purchase replacement water pumps. Between 1998 and 2000, the GPID expended almost one-third of the district’s operating budget—over $500,000—on legal fees fighting against dam removal, including opposing changes to the district’s water rights, challenging the imposition of fish mitigation measures, and suing former district patrons who attempted to leave the district and cancel individual water rights.

Frustrated with the slow progress toward removing the Savage Rapids Dam, in 1998, the Oregon Water Resources Commission determined that the GPID had violated the terms of its water right by failing to diligently provide fish conservation measures. At a 1998 hearing examining the GPID’s water rights, the Commission reduced GPID’s diversion right by about 50%, an action that the Oregon Court of Appeals subsequently affirmed.

Environmentalists and federal agencies renewed their efforts to remove the

280 Id.
281 Id. at 197–98.
282 See id. at 200.
283 See id. at 198–99.
284 Whitworth, supra note 258, at 198–99.
285 See id. at 197–90.
287 See GROSSMAN, supra note 42, at 148–49.
288 Id. at 145, 149.
289 See Whitworth, supra note 258, at 201.
290 Id.
2012] DAM REMOVAL IN THE PACIFIC NORTHWEST 1075

dam and joined the Commission in taking action against the GPID. In 1998, NMFS filed a lawsuit against the GPID, alleging illegal takings of threatened coho salmon by the irrigation project. NMFS called the Savage Rapids Dam the “worst fish-killer on the Rogue” and conditioned any ESA incidental take permit for continued operation of the irrigation project on dam removal.

The actions of the Commission and NMFS gave GPID little alternative to removal. After studies indicated that dam removal provided the least expensive means of solving the fish mortality problem, the GPID’s board of directors passed a resolution authorizing the removal of the dam. Under the GPD removal plan, pumping plants along the river near the dam site would continue to supply water to the irrigation system after dam removal. A vote of 6,720 members of the GPID resulted in overwhelming support for dam removal, clearing away opposition within the local community and allowing the board to take proactive measures to implement removal plans. In 2001, GPID entered a consent decree with NMFS, agreeing to seek federal approval and funding to completely remove the dam by November 2006.

To fund the removal of the Savage Rapids Dam, the GPID needed the support of the federal government. The ensuing political process to secure federal authorization and funding resembled the saga that unfolded for the Elwha dam removals. Like Elwha, funding for the Savage Rapids Dam removal came in stages. In 2000, Oregon congressmen introduced the Savage Rapids Dam Act, which would have provided $22.2 million for the complete deconstruction of the dam. Although Congress failed to pass this bill, the federal government appropriated $500,000 to study dam removal in the Rogue basin. Then, in 2004, Congress’s energy and water appropriations bill authorized the Bureau of Reclamation to install

292 See Whitworth, supra note 258, at 200–01. Environmental groups, federal agencies, and tribes had been advocating for dam removal since the 1980s. Id. at 189 n.35.
293 Id. at 192.
294 Whitworth, supra note 258, at 184.
295 Id. at 201.
296 See id.
297 See Whitworth, supra note 258, at 196.
298 Id. at 196–97.
299 Id. at 201–02.
301 See Whitworth, supra note 258, at 202.
302 See supra notes 101–11 and accompanying text; see also Whitworth, supra note 258, at 202 (describing positions of U.S. Senators Gordon Smith and Ron Wyden of Oregon, both of whom supported dam removal as well as federal spending to upgrade the Grants Pass irrigation system).
303 See supra notes 101–11 and accompanying text.
305 See id. § 5; Whitworth, supra note 258, at 202.
306 Id.
replacement pumps to supply water for the GPID and to remove the dam.307 Between 2007 and 2008, Congress appropriated over $28 million for the Savage Rapids Dam removal.308

Once the Bureau of Reclamation received the funding, removal proceeded quickly because federal and state agencies and the local community supported dam removal.309 The Bureau supplemented a 1996 EIS studying dam removal, acquired a federal Clean Water Act section 404 permit and a state water quality certification, and garnered support from other consulting agencies.310 The removal occurred in 2009, beginning with the construction of an upstream cofferdam that allowed engineers to deconstruct the dam in stages.311 Less than five months after deconstruction began, the Rogue River flowed through Savage Rapids, eroding over 150,000 cubic yards of sediments from the reservoir within two weeks.312 Removal of the Savage Rapids Dam allowed unimpeded passage to more than fifty miles of the Rogue’s mainstem and 500 miles of upstream habitat for salmon spawning,313 increasing the Rogue’s salmon population by an estimated 114,000 fish.314

2. Gold Hill Dam

Fifteen miles upstream from the Savage Rapids Dam, a small concrete diversion dam blocked migrating salmon from continuing their journey up the Rogue River.315 In the late 1800s, cement manufacturers began operating in Gold Hill, Oregon, using massive amounts of river water diverted through canals in connection with cement production.316 In the early 1920s, a cement company constructed what was the first concrete diversion dam on the Rogue at Gold Hill.317 In 1944, the company reconstructed the Gold Hill Dam,
adding a powerhouse for hydroelectric generation capable of producing 25 kilowatts (KW)—enough power to operate the cement factory with excess to sell to residents of the area.\footnote{318}{Id.} Although small in stature, the three- to fourteen-foot tall concrete dam posed problems for migrating salmon.\footnote{319}{River Design Grp., Gold Hill Dam Removal, http://www.riverdesigngroup.com/projects/dam-removal-restoration/project-gold-hill-dam-removal (last visited Nov. 18, 2012).} The dam provided fish ladders and fish screens, but failed to prevent fish mortality from upstream and downstream-migrating salmon that entered the diversion canals.\footnote{320}{Id. at 6.}

In 1969, cement production in Gold Hill ended, and the owner-operators of the dam abandoned the structure, which reverted to the City of Gold Hill.\footnote{321}{Id. at 6.} The city unsuccessfully attempted to sell the dam and powerhouse to electric utilities, including PacifiCorp, throughout the 1980s.\footnote{322}{Id. at 6 n.5.} Although the powerhouse had been shut off since 1969, the city continued to use the dam and diversion channels to supply water for irrigation and municipal use, but the dam contributed an insignificant amount of water for use in the region.\footnote{323}{Id. at 6.}

Growing interest in dam removal and river restoration as a way to increase wild salmon populations in the Rogue led to proposals to remove the Gold Hill Dam.\footnote{324}{See Sanne Specht, Gold Hill’s Dam Set for Removal Next Year, MAIL TRIB., July 14, 2007, available at http://www.mailtribune.com/apps/pbcs.dll/article?AID=/20070714/NEWS/707140311.} Because of the insignificant water diversions,\footnote{325}{Id. (noting that around the time the dam was chosen for removal, the city of Gold Hill was only diverting about 5 cubic feet per second (cfs) from the river).} the NMFS pressured the city to remove the dam in order to facilitate coho salmon recovery.\footnote{326}{Id.} In 2006, the city acquired a replacement water intake facility, a pump station placed in the Rogue 150 feet upstream from the dam.\footnote{327}{Id. at 6.} The replacement water supply system made the Gold Hill Dam obsolete and led to the city’s decision to remove the dam.\footnote{328}{See id.}

The process of dam removal at Gold Hill proceeded in a manner similar to that of the Sandy River dams.\footnote{329}{See supra Part IV.B.1.} In both cases, private funding and near-unanimous support for removal produced a short time frame from the dam removal proposal to project completion.\footnote{330}{Compare supra Part IV.B.1, with infra, notes 331–35 and accompanying text.} In Gold Hill, the city secured private grants to completely fund the $4 million removal costs and spent less than one year acquiring permits from federal and state agencies—\footnote{331}{See Chris Jones, Gold Hill Celebrates Dam Removal, KTVL NEWS 10, Jul. 16, 2008, http://waterwatch.org/pressroom/press-clips/gold-hill-celebrates-dam-removal (last visited Nov. 18, 2012); see also Specht, supra note 324 (noting that the project received two large grants from the Oregon Watershed Enhancement Board and that by July 2007, the project was “on the road” to acquiring necessary permits). The Gold Hill Dam Removal Application was submitted to the Army Corps of Engineers on December 27, 2007, and removal of the dam began in July}
which supported dam removal.332 In the Gold Hill community, few residents opposed dam removal, mostly because the dam provided de minimis benefits.333 The only complaints from the community had to do with concerns about the loss of the small reservoir for recreation and the minor costs associated with replacing irrigation lines with longer pipes to reach the river once the channel narrowed.334 During the summer of 2008, engineers removed the concrete structure, allowing the Rogue to flow freely through Gold Hill for the first time in ninety years.335

3. Gold Ray Dam

Five miles upstream from the Gold Hill Dam, the Gold Ray Dam, one of the oldest structures in the Rogue River, presented another obstacle for migrating salmon.336 In 1905, workers completed the original Gold Ray Dam, a structure built as a log-crib dam with a hydroelectric generator capable of producing 750 KW.337 Hydroelectric power from Gold Ray supplied electricity for much of the Rogue Basin throughout the first half of the twentieth century.338 In 1941, the dam operators, Condor Water and Light Company, constructed a replacement dam on the same site as the original log-crib structure.339 The newly constructed concrete gravity dam,340 which retained the name Gold Ray Dam, stood thirty-eight feet tall and continued to generate profitable amounts of hydroelectric power serving the surrounding area.341 Eventually, Condor Water and Light Company sold the Gold Ray Dam to the California-Oregon Power Company, which later sold the dam to PacifiCorp.342

\begin{footnotesize}
\begin{enumerate}
\item[332] See Jones, supra note 331.
\item[333] Id.
\item[334] Id.
\item[335] Id.
\item[339] Id.
\item[341] OFFICE OF HABITAT CONSERVATION, NAT’L MARINE FISHERIES SERV., BIOLOGICAL ASSESSMENT FOR THE REMOVAL GOLD RAY DAM 1 (2010), available at http://rvcog.org/NR_upload/Gold%20Ray%20Dam/Other%20Technical%20Reports/Gold%20Ray%20Dam_BA_Final_ToNMFS_1.pdf [hereinafter GOLD RAY BA].
\item[342] Powers, supra note 338.
\end{enumerate}
\end{footnotesize}
In 1972, PacifiCorp abandoned the Gold Ray Dam, allowing ownership of the structure to revert to Jackson County. From the outset, Jackson County encountered severe financial and regulatory problems associated with maintenance of the aging dam. Although the dam no longer produced hydropower, the county faced the escalating costs of repairing the dam and replacing decades-old fish ladders that failed to meet current NMFS and Oregon Department of Fish and Wildlife standards. Estimates placed the removal costs of the dam at $5 million, compared to over $70 million to refurbish the dam to generate uneconomical amounts of hydropower. In addition to ordinary maintenance and fish ladder costs, concerns over the safety of the concrete structure forced Jackson County to consider removal as the only economically viable option. By 2009, the county decided to seek federal funding to facilitate dam removal.

In 2009, the county received a $5 million grant from the National Oceanic and Atmospheric Administration under the American Recovery and Reinvestment Act (the Obama Administration’s economic stimulus package) and began the process of permitting the dam removal. Like the Gold Hill and Sandy River dams, few local interests opposed removing the Gold Ray Dam, largely because the dam had outlived its usefulness. In June 2010, removal work began on the dam site, using a two-stage process of dam removal similar to that implemented at Savage Rapids. Yet, just as work on the removal began, some local citizens filed a lawsuit to halt the dam’s deconstruction.

The opponents who sued Jackson County claimed that removing the dam violated county land-use regulations and would destroy wetlands, harm structures of historical significance, and damage water quality. In July...

343 GOLD RAY BA, supra note 341, at 2.
344 Id.
345 Id.
347 GOLD RAY BA, supra note 341, at 2.
348 Id.
351 GOLD RAY BA, supra note 341, at 6.
353 See id.
2010, Oregon’s Land Use Board of Appeals dismissed the case, affirming the county’s ability to proceed as planned in removing Gold Ray Dam.\(^{354}\) Two weeks after the lawsuit, deconstruction work resumed, and the engineers completely removed the dam by the end of the summer of 2010.\(^{355}\) With the completion of the Gold Ray Dam’s removal, for the first time in over 100 years the mainstem of the Rogue flowed freely from its upper reaches to the Pacific Ocean.

4. Elk Creek Dam

 The fourth major obstacle to fish migration in the Rogue Basin was a partially completed flood control dam on Elk Creek, one of the Rogue’s major tributaries and a significant salmon spawning stream.\(^{356}\) In 1955, massive floods in the Rogue Basin led Congress to authorize a series of dams designed to supply irrigation water, provide recreation benefits, and control the rivers flows, thus relieving downstream concerns about flooding.\(^{357}\) The Rogue River Basin flood control project proposed to build three dams under the supervision of the Army Corps of Engineers.\(^{358}\) In 1977, the Corps completed the William L. Jess Dam on Lost Creek, a tributary upstream from the Elk Creek–Rogue confluence.\(^{359}\) Three years later, in 1980, workers finished construction of the second dam, the Applegate Dam, located on a downstream tributary of the Rogue.\(^{360}\) The Corps proposed to build the third dam on Elk Creek, 1.5 miles upstream from the stream’s confluence with the Rogue.\(^{361}\) In 1986, construction of the Elk Creek Dam began;\(^{362}\) however, litigation and a political fight over the wisdom of damming Elk Creek soon forced the Corps to abandon its efforts to complete the dam.\(^{363}\)

\(^{354}\) See Shock v. Jackson Cnty., 61 Or. LUBA 403, 404 (2010); Freeman, supra note 346.

\(^{358}\) Id.

Soon after the construction began, environmentalists concerned about the effects that the dam would have on anadromous fish turned to the courts to stop construction of the Elk Creek Dam. The environmental groups, led by the Oregon Natural Resources Council, claimed that the Corps violated the National Environmental Policy Act (NEPA) by failing to adequately analyze the environmental effects of the dam, particularly the agency’s failure to conduct a sufficient cumulative impacts analysis, mitigate the environmental impacts, supplement the dam’s EIS, and conduct a “worst case analysis” of potential but uncertain effects. In Oregon Natural Resources Council v. Marsh, the Ninth Circuit ruled in favor of the environmentalists, concluding that the Corps’ environmental analysis violated NEPA and issued an injunction barring the Corps from completing the dam until it adequately analyzed the dam’s potential environmental effects. However, in 1989, the Supreme Court reversed the Ninth Circuit, determining that the Corps’ analysis satisfied NEPA because the Corps was not required to conduct a supplemental EIS, the agency fulfilled NEPA’s mitigation requirements, and the statute did not require agencies to consider a worst-case scenario.

Although the Supreme Court validated part of the Corps’ NEPA analysis in Marsh, the Elk Creek Dam never was completed. Between 1992 and 1995, the USFS, BLM, and NMFS each concluded that the Elk Creek Dam would unreasonably damage wild anadromous fish populations in the Rogue Basin. In 1994, the federal court for the District of Oregon renewed the injunction prohibiting further dam construction and required the Corps to conduct a new analysis considering the effects of the dam on the Rogue’s fishery, a decision that was upheld by the Ninth Circuit. In 1995, the

366 820 F.2d 1051 (9th Cir. 1987), rev’d, 490 U.S. 360 (1989).
367 Id. at 1055–62.
Corps determined that the financial costs of legal challenges, environmental studies, necessary fish passage facilities, and continued construction outweighed the potential gains of the dam. Consequently, the agency abandoned the Elk Creek Dam project, leaving one-third of the eighty-three-foot structure blocking the stream channel—preventing fish passage in Elk Creek and providing no economic or flood control benefits to the human community.

Once the Corps decided not to complete the dam, a political controversy erupted over the future of the partially finished dam that continued to hinder the recovery of threatened salmon species. Like the political debate over funding for dam removals on the Elwha River, the controversy over the future of the Elk Creek Dam featured two conflicting views and passionate advocates arguing for and against dam removal. On one side of the debate, a few powerful political figures opposed removing the dam, preferring instead that the Corps maintain the structure to preserve the possibility of finishing the dam in the future. On the other side, a coalition of organizations and government agencies championed dam removal to promote anadromous fish recovery and serve the public interest by restoring the natural flow of the river. Toward the end of a fourteen-year debate, a key political figure who had opposed dam removal, U.S. Representative Greg Walden of Oregon, notified the Corps that any efforts to remove or notch Elk Creek Dam would not be funded by Congress, and that the Corps should continue its existing salmon transportation plan, which consisted of trapping salmon below the dam and trucking the fish above the dam. Congressman Walden’s opposition to dam removal culminated in a 2003 spending bill rider that prevented the Corps from implementing the dam notching plans.

Ultimately, Congressman Walden and the dam removal opponents could not match the overwhelming public and scientific support in favor of removing or notching Elk Creek Dam. Since the early 1990s, NMFS

372 Or. Natural Res. Council v. Marsh, 52 F.3d at 1490 (9th Cir. 1995); see Elk Creek Dam Timeline, supra note 370.
373 See Elk Creek Dam Timeline, supra note 370.
374 See Oregon Wild, supra note 356; Elk Creek Dam Timeline, supra note 370.
376 Elk Creek Dam Timeline, supra note 370; see also supra Part II.B.2.
377 See Mortensen, supra note 357.
378 See Oregon Wild, supra note 356.
379 The political controversy lasted from about 1994 to 2008. See Elk Creek Dam Timeline, supra note 370.
380 See Nat’l Park Serv., supra note 113 (explaining the concept of “notching” a dam).
382 See Elk Creek Dam Timeline, supra note 370.
383 See id.; Oregon Wild, supra note 356.
expressed concerns that the dam failed to provide effective fish passage, and
that no other more effective techniques, such as fish ladders, promised to
redress the issue of fish passage at Elk Creek Dam. The Corps eventually
agreed with NMFS, concluding that notching the dam would be the least
expensive means of addressing the fish passage issue. Elk Creek
historically provided a significant amount of the Rogue Basin's spawning
habitat, accounting for 44% of upper Rogue coho spawning habitat and 15%
to 20% of upper Rogue steelhead spawning habitat. In 2001, a NMFS BiOp
concluded that unless the Corps notched Elk Creek to allow for fish passage,
coho salmon, a listed threatened species, would be jeopardized.

With the scientific debate over the merits of notching settled, advocates
for river restoration increased pressure on Congress to notch Elk Creek
Dam. In 2002, Oregon Governor John Kitzhaber urged the Corps to notch
the dam in order to boost economic value of the Rogue's fishery and recover
coho stocks. Other groups pointed out the expense and inefficiencies of
the Corps' fish transportation plan—both Taxpayers for Common Sense and
environmental groups called the plan a waste of taxpayer's money and urged
Congress to force the Corps to notch the dam.

In 2007, the Corps finally acquiesced and released a plan to notch Elk
Creek Dam by demolishing the middle section of the structure, allowing the
stream to run through a reclaimed channel. Beginning in July 2008, nine
controlled blasts destroyed the concrete sections of the dam in the middle of
the creek. During the summer of 2008, the Corps provided re-vegetation,
stream bank stabilization, and stream channel reclamation along a portion of
Elk Creek. Engineers cleared concrete from the streambed, but left the
concrete remnants of the unfinished dam on either side of the stream,
framing the river as it flows through the former dam site.

384 Elk Creek Dam Fact Sheet, supra note 362.
385 Oregon Wild, supra note 356.
386 Elk Creek Dam Fact Sheet, supra note 362.
387 Margaret B. Bowman, Legal Perspectives on Dam Removal, 52 BIOSCIENCE 739,
741 (2002).
388 See Elk Creek Dam Fact Sheet, supra note 362.
389 Letter from John Kitzhaber, Governor, Oregon, to U.S. Representatives C.W.
Bill Young and David R. Obey, House Committee on Appropriations (Aug. 27, 2002),
390 Letter from American Rivers, Taxpayers for Common Sense (and other environmental
groups), to U.S. Representatives C.W. Bill Young and David R. Obey, House Committee on
elk_creek_dam/elk-creek-dam-background-documents/american-rivers-taxpayers-for-common-
391 Elk Creek Dam Fact Sheet, supra note 362.
392 Id.
393 Id.
394 See WaterWatch, Notching the Elk Creek Dam, http://waterwatch.org/programs/freeing-
the-rogue-river/notching-the-elk-creek-dam (last visited Nov. 18, 2012)
B. Restoring the Rogue River

Almost immediately after the removal of the three mainstem Rogue dams, the river’s salmon fishery showed signs of recovery. In 2010, biologists found thirty-one redds—small nests dug by fish in stream beds for egg laying—in the Rogue where the Gold Ray reservoir once stood, and sixty-three in the former Savage Rapids reservoir. With the continuation of river restoration projects, including streambank stabilization throughout the basin, biologists and fishermen are optimistic that salmon populations will rebound.

VI. THE KLAMATH RIVER BASIN: LOOKING AHEAD TO FUTURE DAM REMOVALS

To the south of the Rogue Basin, the Klamath River flows from its headwaters in the Cascade Range near Klamath Falls, Oregon, for over 263 miles to its mouth at the Pacific Ocean in northern California. The Klamath carves a course through two distinct geographic areas—the dry, high desert of southern Oregon, where water derives primarily from spring snowmelt, and the wet, temperate clime of northern California, where rainfall and numerous tributaries increase the river’s discharge. Historically one of the most biologically productive streams in the Pacific Northwest, the Klamath yielded abundant runs of anadromous fish, averaging 880,000 spawning salmon per year. For over 4,500 years, the Klamath Tribes have relied on the river’s salmon and sucker fish as staple food sources and pillars of their cultural identity. Unfortunately, hydroelectric dams, irrigation projects, and recent droughts nearly destroyed the Klamath’s wild salmon.

395 See Learn, supra note 271, at 1.
396 Id. at 8.
397 See id.
400 The lower Klamath River’s principle tributaries include the Trinity, Shasta, Scott, and Salmon Rivers. NAT’L MARINE FISHERIES SERV., KLAMATH RIVER BASIN, 2009 REPORT TO CONGRESS 2 (2009).
401 See Doremus & Tarlock, supra note 399. The Klamath River Basin covers an area of over 12,100 square miles. POWERS ET AL., supra note 398.
403 The Klamath Tribes include the Klamath, Modocs, and Yahooskin peoples of the upper basin, as well as the Karuk and Yurok tribes of the lower basin. Daniel McCool, Rivers of the Homeland: River Restoration on Indian Reservations, 16 CORNELL J.L. & PUB. POL’Y 539, 540–50 (2007).
404 See id. at 552.
population; current salmon runs number only about 6% of historic levels.405 Throughout most of its modern history, controversy and political strife have dominated the Klamath Basin, including conflicts over virtually every major western water issue—dams, water rights, and endangered species.406

A. Setting the Stage for the Klamath Controversy

Non-native settlement and population growth in the Klamath Basin began in the middle of the nineteenth century as miners and pioneers flocked to the resource-rich area pursuing gold, timber, and farmland.407 In 1905, the Bureau of Reclamation authorized the construction of hydroelectric dams and irrigation canals throughout the basin, which eventually supplied electricity and water to over 200,000 acres of arid farmland in Oregon and California.408 Currently, the mainstem of the Klamath River contains five dams, including four hydroelectric dams, owned and operated by PacifiCorp as part of the Klamath Hydroelectric Project.409 The combined effects of dams and irrigation, however, blocked the Klamath to salmon migration and reduced water flows, destroying fish spawning habitat and leaving the once-abundant salmon in danger of extinction.410

1. Dam Building for Power

In 1913, construction began on the first in a series of dams planned as part of an ambitious hydroelectric project on the mainstem of the Klamath River.411 The California Oregon Electric Company (COPCO) initiated the Klamath Hydroelectric Project by building two concrete arch hydroelectric

405 Spain, supra note 402, at 52; see also Robert A. McFarlane, Note, The Imperiled Klamath River Salmon: A Troubled History and A Hopeful Future Under the Central Valley Project Improvement Act, 1 HASTINGS W.-NW J. OF ENVTL. L., POL’Y, 89, 92–93 (1994) (recognizing that in 1992, the number of salmon returning to spawn in the Klamath Basin reached an all-time low of 25,900).
406 See McCool, supra note 403, at 549 (noting that the “Klamath Basin has become famous for conflict”) (citation omitted).
dams in Ward’s Canyon, 198 miles upstream from the Klamath’s mouth.412 Five years after construction began, COPCO completed the first structure, Copco No. 1, a massive 120-foot dam that generated 20 MW of electricity.413 In 1925, engineers completed the second dam, Copco No. 2, which stood twenty-one feet tall at a quarter mile downstream from Copco No. 1.414 Together the two dams generated 47 MW of electricity and completely blocked salmon access to seventy-five miles of the upper Klamath River.415

As farms grew and more fields required irrigation, an increasing demand for electricity led to the expansion of the Klamath Hydroelectric Project.416 In 1958, workers completed the Big Bend Dam, later renamed the J.C. Boyle Dam, twenty-five miles upstream from the Copco Dams.417 The sixty-eight-foot earthen-fill dam generated 80 MW of electricity for COPCO’s power customers in the Klamath Basin.418 Because the construction of the J.C. Boyle Dam occurred after the Federal Water Power Act of 1935, COPCO required a permit for construction and operation of the dam.419 In 1954, COPCO received a fifty-year license for the J.C. Boyle Dam, which was later transferred to PacifiCorp after the two companies merged in 1961—the same year PacifiCorp took over management of the Klamath Hydroelectric Project.420

In 1959, the California Fish and Game Department and the downstream Klamath fishing industry threatened to sue PacifiCorp over the wildly fluctuating water releases from the Copco and J.C. Boyles Dams.421 PacifiCorp generated power from the three dams by releasing stored water from the reservoirs at times of high electricity demand.422 This produced drastically varying downstream river levels that harmed fish and water quality in the lower Klamath.423 In order to avert the lawsuit and better regulate flows on the Klamath, PacifiCorp agreed to build a new dam

413 See KRAMER, supra note 411; G&G ASSOCs., supra note 412.
414 G&G ASSOCs., supra note 412.
416 See Clark & Miller, supra note 407, at 20–24.
417 See PACIFICORP, EXHIBIT C: CONSTRUCTION HISTORY AND PROPOSED CONSTRUCTION, KLAMATH HYDROELECTRIC PROJECT (FERC PROJECT NO. 2082), at 4-1 (2004); G&G ASSOCs., supra note 412.
418 See PACIFICORP, supra note 417.
419 16 U.S.C. §§ 797(e), 800. See Klamath Off-Project Water Users, Inc. v. PacifiCorp, 240 P.3d 94, 96 (Or. App. 2010).
420 See Klamath Off-Project Water Users, 240 P.3d, at 96–97.
422 Id.
423 Id.
downstream from the Copco Dam. After completion of the Iron Gate Dam, the Klamath Hydroelectric Project consisted of four hydroelectric dams, with a rated capacity of 169 MW. Currently, the four dams produce closer to 81 MW, supplying power to over 1,400 farms and about 70,000 homes throughout the Klamath Basin.

With no fish passage facilities at the three downstream dams—Iron Gate and Copco Nos. 1 and 2—the Klamath Hydroelectric Project completely blocked migratory fish access to 300 miles of the upper Klamath River and its tributary streams.

2. Irrigating the Upper Klamath Basin

Coinciding with the start of dam construction on the Klamath, the Bureau of Reclamation began a massive irrigation project to drain marshlands and deliver water from the Klamath River to farms in the upper basin. In 1905, the Bureau began constructing water storage dams, reservoirs, and over 185 miles of canals—all part of the Klamath Irrigation Project. The federal government’s policy of transforming the arid upper Klamath Basin into productive farmland through subsidized irrigation gained further momentum in 1917 when the government opened public lands to homesteaders who paid only a small fee in exchange for the delivery of irrigation water.

With a continuously growing population and demand for water, the federal government enacted the Klamath River Basin Compact to govern the orderly development of the basin. The 1957 Compact prioritized irrigation

424 See supra note 424.
425 See supra note 421; G&G ASSOCS., supra note 412, at 18.
426 See supra note 420, at 444. Until 2006, PacifiCorp contracted with the Bureau of Reclamation to operate two government dams. Id. at 444 n.130. The Link River and Keno Dams are primarily flow-regulating dams located near the Klamath’s headwaters at river miles 254 and 233, respectively. A 22-mile reservoir formed behind the Keno Dam supplies water to 41% of lands irrigated by the Klamath Irrigation Project. Id. at 444 n.132. The contract between PacifiCorp and the Bureau of Reclamation required the Klamath’s flows to be regulated to ensure the availability of irrigation water in the reservoir. Id. The Link River Dam also supplies water to two powerhouses, the Eastside and Westside Powerhouses, id. at 444, which have a combined generating capacity of 3.8 MW and are technically part of the Klamath Hydroelectric Project. Id. at 444 n.131.
427 See supra note 420, at 444.
428 See supra note 424.
429 See supra note 421; G&G ASSOCS., supra note 412, at 18.
430 See supra note 420, at 444. Until 2006, PacifiCorp contracted with the Bureau of Reclamation to operate two government dams. Id. at 444 n.130. The Link River and Keno Dams are primarily flow-regulating dams located near the Klamath’s headwaters at river miles 254 and 233, respectively. A 22-mile reservoir formed behind the Keno Dam supplies water to 41% of lands irrigated by the Klamath Irrigation Project. Id. at 444 n.132. The contract between PacifiCorp and the Bureau of Reclamation required the Klamath’s flows to be regulated to ensure the availability of irrigation water in the reservoir. Id. The Link River Dam also supplies water to two powerhouses, the Eastside and Westside Powerhouses, id. at 444, which have a combined generating capacity of 3.8 MW and are technically part of the Klamath Hydroelectric Project. Id. at 444 n.131.
431 See supra note 420, at 444.
432 See supra note 424.
433 See supra note 421; G&G ASSOCS., supra note 412, at 18.
434 See supra note 420, at 444. Until 2006, PacifiCorp contracted with the Bureau of Reclamation to operate two government dams. Id. at 444 n.130. The Link River and Keno Dams are primarily flow-regulating dams located near the Klamath’s headwaters at river miles 254 and 233, respectively. A 22-mile reservoir formed behind the Keno Dam supplies water to 41% of lands irrigated by the Klamath Irrigation Project. Id. at 444 n.132. The contract between PacifiCorp and the Bureau of Reclamation required the Klamath’s flows to be regulated to ensure the availability of irrigation water in the reservoir. Id. The Link River Dam also supplies water to two powerhouses, the Eastside and Westside Powerhouses, id. at 444, which have a combined generating capacity of 3.8 MW and are technically part of the Klamath Hydroelectric Project. Id. at 444 n.131.
over all water uses in the basin other than domestic use, including instream flows for fish and wildlife.434 By 2001, the Klamath Irrigation Project supplied water to over 200,000 acres of farmland,435 but human population growth and water users have long exceeded the capacity of the Klamath to supply enough water for all of the farmlands, let alone leaving water in the river to sustain the ecosystem.436

The economic dependence of farmers on irrigation water has led to serious fights over water appropriations in the basin.437 In 2001, a severe drought left the Klamath Basin, an already dry region, especially desperate for water.438 The Bureau implemented an operations plan for the Klamath Irrigation Project that re-prioritized water deliveries, leaving water in the river for ESA-listed fish and tribal water rights,439 but shutting off water deliveries to upper Klamath irrigators—a move that elevated the water conflict into a furor.440 After losing a lawsuit attempting to enjoin the Bureau from implementing the operations plan,441 the Klamath Irrigation District, an organization of irrigators, sued the federal government for $1 billion in lost revenue to farms as a result of the irrigation shut-off.442

Another front in the Klamath water war occurred at the convergence of hydropower and irrigation. Since 1917, a clause in PacifiCorp’s FERC license for the Klamath Hydroelectric Project allowed irrigators to receive electricity for irrigation pumps from the hydroelectric dams at one-twelfth to one-seventeenth the market price.443 In 2006, the states of Oregon and California ordered a decoupling of the favorable rates and a return to market prices phased in over a seven- and four-year transition period, respectively.444

434 See Davidson, supra note 22, at 536. Water conservation was one of the stated goals of the Compact, a goal that seems to have been lost between Washington, D.C. and Oregon. Klamath River Basin Compact, art. I(a), 71 Stat. at 497.

435 See Davidson, supra note 22, at 536.

436 See Spain, supra note 402, at 93–94. The Oregon Water Resources Department still issues water rights in the Klamath Basin even though the basin has been over-appropriated for years. Id. Irrigators have begun pumping groundwater to fill their demands for water, resulting in groundwater depletion that has exacerbated the conflict in the Klamath. Id. at 94.

437 See Jeff Barnard, Fight Over Water in Klamath Basin is Symbol of West, SEATTLE TIMES, Dec. 1, 1996, http://community.seattletimes.nwsource.com/archive/?date=19961201&slug=2362598 (last visited Nov. 18, 2012). The late-1970s drought was aptly named the “Klamath Salmon War” because of the conflicts between irrigators and the fishing industry and tribes. See McFarlane, supra note 405, at 92.

438 See Davidson, supra note 22, at 543–44.

439 See McHenry, supra note 408, at 1045–46.

440 In 2001, the Klamath water conflict nearly deteriorated into violence when farmers staged a protest to release water from irrigation headgates. See Davidson, supra note 22, at 545. U.S. Marshals were called to Klamath Falls, Oregon, because local police refused to arrest the farmers. See Bruce Barcott, What’s A River For? MOTHER JONES, May/June 2003, http://www.motherjones.com/politics/2003/05/whats-river.

441 See Kandra v. United States, 145 F. Supp. 2d 1192, 1200–02 (D. Or. 2001) (denying the irrigators’ injunction request); McHenry, supra note 408, at 1027.

443 See id. 113–14.

444 See id. at 115.
Although an association of Klamath irrigators continues to challenge the states’ decision to decouple, the elimination of below-market power rates removed the principal economic interest irrigators had in maintaining the Klamath’s hydroelectric dams.

3. Tribal Water Rights and the Disappearing Salmon

For almost a century, the interests of hydropower and irrigators took precedence in the Klamath Basin, subjugating tribal and environmental water usage, and at times leaving not even a single drop of water in the river. In 1864, the Klamath Tribes signed a treaty with the federal government guaranteeing tribal fishing rights in historic fishing grounds of the basin. The Bureau of Reclamation and Oregon’s Water Resources Department, however, paid little attention to the tribes’ reserved fishing rights until 1983, when the Ninth Circuit ruled that the Bureau’s irrigation project must leave enough water in the Klamath to ensure fishing capacity. The Ninth Circuit elevated consideration of tribal water interests above irrigators, concluding that the tribes’ water priority date extended to time immemorial and recognizing the tribes’ water rights as the most senior in the basin.

Although the Ninth Circuit recognized the tribes’ senior water rights, the historic Klamath water conflict descended into a “wicked” natural resource problem with the interjection of the Endangered Species Act. Because the hydroelectric dams blocked migrating fish access to upstream spawning grounds, and because irrigators pumped massive amounts of water out of the river and tributaries, the native fish species of the Klamath entered a precipitous decline.

In 1988, the Fish and Wildlife Service listed two upstream fish, the Lost River sucker (Deltistes luxatus) and short-nose sucker (Chasmistes brevirostris), as endangered species. The ESA’s requirement that federal agencies consider and protect the listed sucker fish forced the Bureau to store more water in upper basin reservoirs, keeping higher upstream water levels and improving sucker fish

445 See id. at 115–16 (discussing Klamath Off-Project Water Users, Inc. v. PacifiCorp, 240 P.3d 94, 96 (Or. App. 2010) in which the court summarily dismissed the irrigators’ claims).
446 Id. at 113. None of the hydroelectric dams provide water storage directly for the Klamath Irrigation Project, as the irrigation diversions all occur well upstream from the dams. Id. at 101.
447 See McFarlane, supra note 405, at 94.
448 See Davidson, supra note 422, at 541.
449 See United States v. Adair, 723 F.2d 1394, 1413–14 (9th Cir. 1983); Spain, supra note 402, at 92–93.
450 See Spain, supra note 402, at 92.
451 See Martin Nie, Drivers of Natural Resource-Based Political Conflict, 36 POL’Y SCI. 307, 310 (2003) (describing “wicked” natural resource problems as exhibiting four characteristics: 1) defining the problem is a problem, 2) having no clear point when the problem can be deemed solved, 3) eluding yes/no policy questions and objective evaluations, 4) consisting of a pattern where every sub-problem is a symptom of another problem.)
452 See Spain, supra note 402, at 52.
But the maintenance of Klamath water upstream, combined with severe droughts in the early 1990s, proved catastrophic for other struggling native species. In 1997, the NMFS listed coho salmon as a threatened species, in large part due to the poor water quality and inadequate downstream Klamath flows that prevented the salmon from migrating upstream to spawning habitat. Between September 20 and 27, 2002, over 30,000 fish died in the lower Klamath due to toxic water conditions and low flows—an event that was one of the largest salmon-kills ever. The loss of wild salmon in the Klamath also resulted in economic hardship for the northern California and Oregon fishing industry, which lost over $100 million in revenue due to fishing closures in 2006 alone.

In order to fulfill their obligations under the ESA to protect upstream and downstream fish habitat, the Bureau’s 2001 Operations Plan reprioritized water deliveries in the basin. The plan directed the Bureau to leave enough water in the Klamath to ensure habitat for upstream sucker fishes and downstream salmon, and fulfill tribal water and fishing rights before supplying irrigators. In a decision cursed by farmers, the federal district court upheld the Operations Plan, noting that the ESA functioned as a trump card in natural resource management. According to the court, the Bureau had a legal duty to leave enough water in the Klamath to avoid jeopardy to listed species and to fulfill tribal water rights, even if doing so meant causing economic harm to irrigators.

B. Dam Removal and the Klamath Basin Agreements

The severe decline and subsequent ESA listing of wild fish in the Klamath eventually led to calls from environmentalists, the Klamath Tribes, and the fishing industry to remove the hydroelectric dams and restore the Klamath’s abundant fishery. The campaign for dam removal accelerated in 2004 when the Klamath Hydroelectric Project’s fifty-year FERC license was

454 See Spain, supra note 402, at 58.
455 See id. at 52.
459 See McHenry, supra note 408, at 1045.
460 See id.
461 See Kandra v. United States, 145 F. Supp. 2d 1192, 1207 (D. Or. 2001); see also Spain, supra note 402, at 58.
462 See Kandra, 145 F. Supp. 2d at 1207 (citing Tenn. Valley Auth. v. Hill, 437 U.S. 153, 184 (1978), for the proposition that “the ESA requires an agency to avoid jeopardy to species, ‘whatever the cost’”).
463 See Allen, supra note 409, at 446.
set to expire. By 2010, the major interest groups in the Klamath Basin signed two agreements proposing major changes to water resource management in the basin and aiming to remove PacifiCorp’s four hydroelectric dams by 2020.

1. The Relicensing Process

In 2004, PacifiCorp began the process of renewing its FERC license for the continued operation of the Klamath Hydroelectric Project. For the next two years, federal agencies studied the environmental and economic effects of relicensing the Klamath dams. Under the Federal Power Act, FWS and NMFS submitted joint comments, including mandatory prescriptions for FERC to include in the renewed license. FWS and NMFS prescribed new fish ladders, fish screens, and improved spillways at all four dams. The Department of the Interior also submitted comments recommending that FERC require minimum flows from the J.C. Boyle Dam, minimum water levels in the Keno reservoir, and streamflow monitoring throughout the reach of the Klamath Hydroelectric Project.

In its final EIS released in 2007, FERC concluded that the required modifications and improvements to the hydroelectric dams would cost more than the likely revenue from maintaining the dams, making relicensing the entire Klamath Hydroelectric Project uneconomical. As a result of this conclusion, and due to the reluctance of Oregon and California to provide certifications under section 401 of the Clean Water Act without substantial improvements to the Klamath’s water quality, PacifiCorp turned to the negotiating table, seeking a settlement with key stakeholders.

The resulting negotiations produced two major agreements addressing water allocation and hydropower conflicts in the Klamath Basin.

2. The Agreements

In February 2010, approximately twenty parties signed the Klamath Basin Restoration Agreement—a major proposal to resolve water allocation

464 See id. at 446–47.
465 See id. at 451–52.
466 Id. at 446–47.
467 See id. at 447.
468 See id. Recall that under the FPA, FWS and NMFS may submit mandatory prescriptions that FERC must include in the license. See Federal Power Act, 16 U.S.C. § 811 (2006); Blumm & Nadol, supra note 153, at 85.
469 PacifiCorp challenged the fishway prescriptions, but an administrative law judge ruled in favor of the FWS and NMFS prescriptions. See Klamath Hydroelectric Project, No. 2006-NMFS-0001, at 6 (NOAA Fisheries Sept. 27, 2006).
470 See Allen, supra note 409, at 449.
471 See id.; KLAMATH EIS, supra note 415, at 4-4, 4-6 tbl.4-4.
472 See Allen, supra note 409, at 449–450.
473 See id. at 451.
474 See Schlosser, supra note 457, at 44–45.
475 See id. at 44. PacifiCorp was not a party to the Restoration Agreement.
and fishery issues in the Basin. The Restoration Agreement contained three broad goals for future water allocation in the Klamath: 1) restoring and sustaining fish populations to support an economic harvest; 2) providing water and power for agriculture, domestic use, and wildlife; and 3) promoting sustainability, including mitigating effects of future dam removals. The Restoration Agreement called for the creation of the Klamath Basin Coordinating Council, which would oversee $1 billion in federal spending over ten years on water improvement projects, including $900 million for fish restoration. Although the Restoration Agreement has been roundly criticized on all fronts, perhaps its most controversial provision is the one that tied that agreement to the implementation of the second agreement, the Klamath Hydroelectric Settlement Agreement. Thus, signatories pinned the fate of a crucial Klamath water allocation agreement on the implementation of the largest dam removal project ever proposed. In 2011, Senator Jeff Merkley (D-Or.) introduced a bill in Congress to approve the Restoration Agreement and authorize appropriations for water improvement projects. But so far this bill has not gained much political traction, and even Senator Merkley admitted that the debate is going to continue and the issue is far from settled.

During the signing ceremony of the Restoration Agreement in February 2010, twenty organizations consented to the Hydroelectric Agreement—a framework for decommissioning the Klamath Hydroelectric Project. Within this novel proposal, PacifiCorp and the federal government agreed to continue studying the possibility of removing the four Klamath hydroelectric dams. If the federal government proceeds with dam removal, PacifiCorp

476 See id.
477 See Allen, supra note 409, at 453.
478 See id. at 453–54. The Restoration Agreement requires Congress to approve an additional $400 million appropriation and authorize federal agencies in the Klamath to redirect $600 million in existing funds over the next 10 years. Id.
479 See Schlosser, supra note 457, at 43 (criticizing the agreements for their abandonment of tribal fishing and water rights); John Devoe, Merkley’s Proposal Unscientific and Unsustainable, OREGONIAN, Dec. 10, 2011, at B7 (discussing the views of WaterWatch of Oregon, an environmental group that does not support the agreements because of the costs they impose and their failure to protect instream flows for fish).
480 See Bill Cross, Harm from Dams Far Outweighs Kilowatts Produced, OREGONIAN, Dec. 3, 2011, at B9 (suggesting the issue of dam removal should be discussed as an economic problem: the value of the electricity generated versus the environmental benefits of dam removal).
484 See Schlosser, supra note 457, at 45.
485 See Allen, supra note 409 at 457.
will transfer title to the four dams486 to a designated dam removal entity,487 which will be responsible for planning and implementing dam removal and river restoration beginning in 2020.488

Under the Hydroelectric Agreement, PacifiCorp ratepayers and Oregon and California taxpayers would pay all of the removal costs up to $450 million.489 In July 2009, Oregon Governor Ted Kulongoski signed into law S.B. 76, a bill that increased rates for PacifiCorp’s Oregon customers in order to raise $184 million by 2020.500 Subsequently, California’s Public Utility Commission approved a rate increase for northern California PacifiCorp customers in order to raise an additional $16 million for the Klamath dam removal.491 As part of the Hydroelectric Agreement, the state of California agreed to provide an additional $250 million for removal through bonds.492 If the costs of dam removal exceed $450 million, the Hydroelectric Agreement releases California, Oregon, and PacifiCorp from further liability,493 placing the burden of potential excess costs on the federal government or private contributions.

Although the Hydroelectric Agreement established the framework for dam removal, the signatories left the ultimate decision of whether to pursue complete dam removal in the hands of the Secretary of the Interior.494 The agreement called for the Secretary to continue studying dam removal and to make a formal determination on whether to move ahead with the plan.495 After the determination, the project could proceed only if Congress enacted legislation approving the plan, and if the following conditions were also met: 1) the Secretary and PacifiCorp agreed on a transfer of titles to the dams, 2) the states authorized funding for removal (and the Secretary established a plan to cover excess costs), and 3) the Secretary identified a willing dam removal entity.496

The established timeline for removal beginning in 2020 under the Hydroelectric Agreement allows PacifiCorp to operate the Klamath Hydroelectric Project in the interim.497 Currently, the four hydroelectric dams continue to operate under year-to-year FERC licenses,498 and

\begin{itemize}
\item 486 See id. at 451, 454. PacifiCorp would be shielded from liability after the voluntary transfer. Id. at 459.
\item 487 See id. at 463. The dam removal entity would be responsible for acquiring the necessary permits and certifications necessary for dam removal. Id.
\item 488 See id. at 464.
\item 489 Id. at 459; see Allison Winter, Interior Analysis Weighs Klamath Dam Removal, But Hill Action Lags, NATURAL RES. WEEKLY REPORT, E&E NEWS, Feb. 2, 2012, http://www.eenews.net/Landletter/print/2012/02/02/10 (estimating total costs for removal of the four hydroelectric dams at $238–$493 million).
\item 490 See Allen, supra note 409, at 450–60; S. 76, 75th Leg., 2009 Reg. Sess. (Or. 2009).
\item 491 See Allen, supra note 409, at 450.
\item 492 See id.
\item 493 See id. at 459.
\item 494 See id. at 457.
\item 495 See id.
\item 496 See id.
\item 497 See id. at 465.
\item 498 See id.
\end{itemize}
PacifiCorp’s yearly revenues from the project are estimated at $27 million.\(^{499}\) The Settlement Agreement also requires PacifiCorp to implement temporary measures for improving fish passage and water quality, including spending $510,000 per year on salmon recovery efforts,\(^{500}\) less than 2% of the annual revenues produced by the project.

\section*{C. Factors Affecting Dam Removal: Lessons for the Klamath}

Two years after the signing ceremony, the future of the Restoration and Hydroelectric Agreements remains anything but certain. Senator Merkley’s efforts to approve and appropriate funding for the agreements in Congress have stalled.\(^{501}\) In February 2012, Secretary Salazar announced that he would delay indefinitely a determination on dam removal because the Department of the Interior lacked authority to take title of the dams and carry out their removal absent congressional action.\(^{502}\) Despite the novel and ambitious plan to resolve the controversies over dams, water allocation, and ESA-listed species in a holistic way, the agreements have drawn sharp criticism from both sides—further galvanizing a region accustomed to disagreement.\(^{503}\) In May 2012, the Hoopa Tribe of the lower Klamath advocated abandoning the agreements and returning the dam-removal decision to the FERC relicensing process.\(^{504}\)

Unlike the examples of the Elwha,\(^{505}\) White Salmon,\(^{506}\) Sandy,\(^{507}\) and Rogue Rivers,\(^{508}\) the Klamath dams\(^{509}\) stand at the center of a dense and complex web of interest groups and political conflict. But the lessons learned from successful dam removals in other parts of the Pacific Northwest shed some light on the factors affecting dam removal in the Klamath. First, the method of funding the Klamath removals differs drastically from previously successful strategies for decommissioning the

\begin{thebibliography}{9}
\footnotesize
\item \(^{499}\) See Schlosser, supra note 457, at 69.
\item \(^{500}\) Allen, supra note 409, at 465.
\item \(^{501}\) See Pope & Learn, supra note 482.
\item \(^{503}\) See Schlosser, supra note 457, at 45 (arguing that PacifiCorp’s “stakeholder benefits [from the Hydroelectric Agreement] will result in a loss of certain ecosystem services and tribal rights in the region”); Michael A. Swiger & Sharon L. White, Rebuttal in Defense of the Klamath Hydroelectric Settlement Agreement, 1 WASH. J. ENVT'L. L. & POL’Y 297, 298 (2011) (defending the Hydroelectric Agreement on behalf of PacifiCorp); Think Out Loud: Environmental Update, OR. PUB. BROAD. (May 8, 2012), http://www.opb.org/thinkoutloud/shows/environmental-update-508 (discussing controversy over whether dam removal will lead to salmon restoration).
\item \(^{505}\) See supra Part II.
\item \(^{506}\) See supra Part III.
\item \(^{507}\) See supra Part IV.
\item \(^{508}\) See supra Part V.
\item \(^{509}\) See supra Part VI.A–B.
\end{thebibliography}
The Klamath’s Hydroelectric Agreement placed the primary fiscal responsibility for dam removal on the citizens who will benefit most from a restored river ecosystem. Yet, by placing two state electorates and two public utility bureaucracies in charge of securing $450 million, the Settlement Agreement has created a significant opportunity for dam removal opponents to derail the project at the federal, state, or local levels. Moreover, the parties to the Restoration and Hydroelectric Agreements may have prolonged the process by tying the two agreements together as a package deal awaiting approval from Congress. Congress might have accommodated a dam removal proposal that required no expenditures, but the current political atmosphere is unlikely to acquiesce to the $400 million in additional appropriations contained in the Restoration Agreement. The price tag of the Restoration Agreement and the branding of the Klamath as the “largest dam removal project in history” seemed to diverge from Congress’s reluctance to spend federal money on infrastructure projects.

Second, community support, or perhaps the lack of community opposition, proved critical to the Elwha, Sandy, and Rogue River dam removals. Pacifying the Klamath Basin population and uniting all of the stakeholders around dam removal in the Klamath is highly unlikely, given the century-old, multi-faceted conflict. The Klamath Agreements attempted to generate a compromise acceptable to most parties; whether this approach will prove successful remains to be seen. Currently, opponents of dam removal, as well as some environmental groups critical of the agreements, have effectively blocked congressional approval and any progress toward dam removal.

Third, in each of the previous dam removals in the Pacific Northwest, a champion (a political figure, an agency, or an energy company) led the movement toward dam removal. Perhaps as a symptom of the lack of widespread support for the agreements, the Klamath lacks a champion leading the campaign for dam removal and generating the political will to

510 See supra notes 108–12, 167–71 and accompanying text.
511 See supra notes 480–93 and accompanying text.
512 See Allen, supra note 409, at 451.
513 Id. at 427.
515 See supra notes 246–47 and accompanying text.
516 See supra notes 309, 324, 350, 378 and accompanying text.
517 See supra note 470 (noting WaterWatch, an Oregon environmental group, does not support the Agreements).
518 See supra notes 109 (Elwha), 160 (White Salmon), 234 (Sandy), 297 (Rogue) and accompanying text.
see the project to completion. Although the dam removal movement remains strong in the Klamath Basin, it is multi-dimensional, with many competing interests and priorities, and no willing and capable leader to garner and maintain the requisite political support from Congress, federal agencies, PacifiCorp, the states, and the local community.

VII. CONCLUSION

From the successful restoration projects on the Elwha, White Salmon, Sandy, and Rogue Rivers, to the proposed dam removals on the Klamath River, this Article examined the experiences of dam decommissioning in the Pacific Northwest. Several important factors, such as the size of the project, the applicability of the FERC licensing process, the existence of local opposition, the leadership of well-positioned politicians, and the availability of funding, all affect the speed of the dam-removal process from proposal to river restoration. The decades of struggles to remove dams in the Pacific Northwest provide valuable lessons for other parts of the country and the world hoping to follow in the Northwest’s footsteps in search of renewed ecosystems and reclaimed rivers.

The physical and human geography of the Pacific Northwest, including a history of massive hydroelectric projects that depleted once-abundant salmon fisheries, provided the impetus to remove the region’s dams. Restoring fisheries also provides a significant motivation for removing dams in the Snake River Basin of Idaho and Eastern Washington. Since the 1980s, river restoration advocates have called for the removal of four lower Snake River hydroelectric dams that block salmon migration to thousands of miles of headwaters spawning grounds. In May 2012, some members of the

520 See Editorial, On the Klamath, A Ship Is Sailing, OREGONIAN, Dec. 2, 2011, at B4 (noting that U.S. Representative Greg Walden, who represents the Klamath Basin, has not fully supported the Agreements because many of his constituents remain opposed to dam removal).

521 See id.

523 See Am. Rivers, Lower Snake River, ID, OR and WA, http://www.americanrivers.org/initiatives/dams/projects/lower-snake-river-id-or-wa.html (last visited Nov. 18, 2012) (“[B]est available science concludes that removing [the four Snake River] dams and restoring a free-flowing lower Snake River would allow for the restoration of healthy, fishable salmon and steelhead”). In addition to benefiting fish, dam removals boost local economies, increasing recreational opportunities and improving public safety. See ECONOMIST, supra note 18, at 35.

The size of the dam and the amount of required restoration work are major factors affecting the outcome of dam removal. Small-scale dams on the Rogue River—the Gold Hill\footnote{530 See supra Part V.A.2.} and Gold Ray Dams\footnote{531 See supra Part V.A.3.}—stood no more than thirty-eight feet tall and were readily removed within a few years of the initial proposal.\footnote{532 See supra notes 319, 329, 335 (Gold Hill) and 341, 349–55 (Gold Ray) and accompanying text.} On the other hand, the Elwha and Glines Canyon Dams each stood at least 105 feet tall with large reservoirs that will require years of reclamation and deconstruction work to restore the river channel.\footnote{533 See supra notes 40–43 and accompanying text.} For more than two decades, the Elwha River dams’ size, complexity, and symbolism represented a daunting task for both engineers and politicians,
delaying the dam’s eventual removal.534 As of 2012, the Elwha dam removals hold the record for the largest U.S. dam removal project in history—535 a record that many citizens and groups in the Klamath Basin hope to usurp.

The FERC licensing process for non-federal hydroelectric dams presents either an opportunity for clarity or a cloud of uncertainty, but exerts a considerable influence over the dam removal result. The Elwha, White Salmon, and Sandy River dams all began the process of dam removal because of the mandatory prescriptions for fish passage imposed by federal agencies under the Federal Power Act.536 In the case of the Condit Dam, PacifiCorp attempted to surrender its FERC license during the renewal application, causing confusion at FERC, which had procedures for license renewal or license surrender, but not both at the same time.537 PGE decided from the outset to voluntarily surrender its FERC license for the Bull Run Hydroelectric Project,538 and the James River Corporation avoided the FERC process by transferring ownership of the Elwha and Glines Canyon Dams to the federal government.539

Local opposition to dam removal in the Pacific Northwest has proven to be one of the most telling factors determining how much time passes between initial proposal and completion of the project. Steadfast political opposition, as demonstrated by Senator Gorton’s refusal to support the Elwha Dam restoration,540 can obstruct the necessary congressional approval and delay the project for years. In contrast, the remoteness and federal ownership of the land surrounding the Sandy River dams meant that the dam removal affected few local landowners, and thus the project proceeded without significant opposition.541 Advocates for removing the Klamath River dams have the most to learn from the Condit Dam removal, where local landowners delayed the state and county permitting process and even attempted to invoke environmental laws to derail the project.542 A controversy as complex as the Klamath’s will not likely prompt unanimous agreement, but persistent and coordinated efforts by federal agencies, tribes, environmentalists, and the dam owners can eventually overcome even a well-funded opposition.

Successful dam removals in the Pacific Northwest all exhibit the presence of at least one strong political champion to provide leadership and influence throughout the dam removal process. Congressmen John Dingell and Norm Dicks and Senator Bill Bradley paved the way for Congress to

\begin{flushleft}
534 See supra Part II.B.1–3.
536 See supra notes 49–58 (Elwha), 150–63 (White Salmon), 224–31 (Sandy) and accompanying text.
537 See supra notes 164, 170–71, 248–50 and accompanying text.
538 See supra notes 231–40 and accompanying text.
539 See supra notes 96–100 and accompanying text.
540 See supra notes 105–06 and accompanying text.
541 See supra note 250 and accompanying text.
542 See supra notes 175–80 and accompanying text.
\end{flushleft}
approve the Elwha Act and fund the Elwha dam removals, and the National Park Service fulfilled a leadership role in planning, permitting, and conducting the restoration. The Yakama tribe and environmental groups successfully campaigned to remove the Condit Dam by forcing a final settlement agreement with PacifiCorp. On the Sandy River, the dam owner, PGE, assumed a leadership role after perceiving an economic and public relations gain through the speedy restoration of an immensely popular wild fishery. Similarly, environmental groups and federal agencies led the way for the Rogue River dam removals. However, the Klamath Basin currently lacks an outspoken political champion.

Finally, dam removals in the Pacific Northwest demonstrate that the sources and amounts of funding determine whether a proposal for dam decommissioning will proceed quickly or experience delay. Congressman Dicks and others secured funding for the Elwha dam removals in stages, allowing each appropriation to contribute small amounts that added up to full funding over the course of a decade. The Elwha and Rogue dam removals both benefited from the 2009 stimulus bill, the American Recovery and Reinvestment Act, because they each had “shovel ready” plans in place. Private funding from the dam owners financed the Condit and Sandy River dam removals, although PacifiCorp operated the profitable Condit Dam for six years under the settlement agreement in order to acquire sufficient funds to pay for the $17 million restoration project.

The projected costs for the Klamath River dam removals dwarf the final bills from the Elwha, White Salmon, Sandy, and Rogue Rivers, especially because interest groups tied the dam removal proposal to the water allocation agreement, which calls for a $400 million appropriation

543 See supra notes 108–12 and accompanying text.
544 See supra note 112 and accompanying text.
545 See supra notes 160, 167–71 and accompanying text.
546 See supra notes 234–40 and accompanying text.
547 See supra notes 292, 325–26 and accompanying text.
548 See supra note 520 and accompanying text.
549 See supra notes 108–12 and accompanying text.
551 See supra note 167 and accompanying text.
552 See supra notes 241–43 and accompanying text.
553 See supra notes 167–68 and accompanying text.
554 See supra notes 110 and accompanying text (Elwha dams removal cost between $246 and $272 million).
555 See supra note 168 and accompanying text (Condit Dam removal costs capped at $17.15 million).
556 See supra notes 242–43 and accompanying text (the Sandy River dam removal cost about $23.7 million).
557 See supra notes 308 (Savage Rapids cost about $28 million), 331 (Gold Hill cost about $4 million), 346 (Gold Ray cost about $5 million) and accompanying text. Total costs for notching the Elk Creek Dam are unknown, but not likely to be significantly more than the removals at Gold Hill or Gold Ray. Oregon Wild, supra note 356.
from Congress. Advocates for the Klamath restoration and other future dam removal proposals might consider following the example of the Elwha dam removals by breaking the appropriations into smaller, more politically palatable amounts. Although spreading the appropriations out into smaller increments could extend the timeline for completing the project, a persistent and measured approach may be the best option for funding larger-scale dam removals in an era of fiscally strapped government budgets. Another option would be to call upon PacifiCorp to commit more of the $510,000 it is required to pay in salmon recovery efforts to help fund implementation of the water allocation agreement, since that sum is just roughly 1.5 percent of the annual revenues produced by the Klamath project.

In the Pacific Northwest, the time between dam removal proposal and completion ranged from only two years for the Gold Hill and Gold Ray Dams to over twenty-nine years at the Condit Dam. On average, the campaigns to successfully remove nine dams in the region lasted about thirteen years. Advocates for current and future dam removal proposals should be prepared for a project that faces significant odds and may take over a decade to complete, depending on the dam’s size, FERC licensing process, community support, political leadership, and funding available for removal.

558 See supra notes 505–14 and accompanying text.
559 See supra notes 108–12 and accompanying text.
560 See supra text accompanying and following note 500.
561 See supra notes 72, 94–112 (Elwha, 25 years); 160–61, 164–190 (Condit, 29 years); 237–57 (Sandy, 7 years); 279–314 (Savage Rapids, 15 years); 331–35 (Gold Hill, 2 years); 341–55 (Gold Ray, 2 years); 379–94 (Elk Creek, 15 years).